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INTRODUCTION.

Investigation of a system of equations, depicting dynamics of

atmosphere, is one of the most complex problems of hydromechanics.

Combination of movements different in character and scale, the enormous

role of hydrodynamic processes and energy conversion make it impossible

to use majority of simplifications usual for other problems. Atmosphere

as an actual physical system, to which it is possible to apply precise

quantitative methods, was first systematically investigated in the work

of H. Margules and specially in the work of the Norwegian school

scientists. Many results of this period retain their significance even

at present; their systematic account could be found in the book of

Bjerknes V., Solberg H., Bergeron T., 1933. Great contribution to the

study of the dynamics of atmosphere was made By Soviet Scientists A.A.

Fridman and N.E. Kochin.

At present almost the only effective method for studying the

complete system of equations of atmosperic movements remains numerical

integration, and the problem does not yield to any complete and exact

logical analysis. Many significant features of atmospheric movements

could be defined in a simple linear model. The atmosphere could be

analyzed as a fine film on revolving sphere having definite elastic

properties. Within this film originate the waves, which sometimes

envelope the whole atmosphere. If the phase velocity of wave is very

much higher than the velocity of particles within the wave, linear

approximation gives very accurate result; otherwise only very appro-

ximate features of the dynamics of atmosphere could be defined.
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Atmosphere, taken as a film, is a very complex oscillating

system. Its elasticity is epecified by many causes. Besides the fact,

that even with most idealized assumptions, this medium is not of simple

structure, air particles are affected by forces of various nature.

Firstly, it is forces of ordinary elasticity, bound with compressibility

of air. Secondly these are the buoyancy forces, specified by non-

uniformity of atmosphere in elevation, layering or stratification.

Particle, deflected vertically, if its state varies adiabatically,

acquires density different from surrounding particles. The difference

Archmedes force and its weight forces it either to continue deviation

from original state with acceleration, or to return into initial state,

due to which there are oscillations close to equilibrium. In the first

case it is known as unstable stratification, in the second - stable.

For stability it is required and is sufficient, that the tem-

perature drop with altitude in atmosphere should occur gradually, slower

than the temperature drop in a particle adiabatically displaced upward.

On an average the atmosphere is always stable, there could only be

individual zones of instability, mainly close to the surface of Earth,

where the convection currents are being developed. The monograph will

analyse a certain averaged model of atmosphere, and therefore, it will

always be stable. Thirdly, the atmosphere hasesoite-gyroscopic rigidity,

reacting-torany disturbance by the appearance in it of.oscillating motion,

as in precessing top, since the atmosphere rotates jointly with Earth,

representing its own type of gyroscope.

Gyroscopic forces cannot be felt with motion on a very small

scale; in the study of these movements it may be assumed, that the
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atmosphere is on an average immobile and that the Earth is flat. Here

it is possible to separate waves with periods with periods 5-10 min.,

bound mainly with the effect of gravity forces, i.e. of buoyancy force.

For these waves, which are called the short gravity waves, elasticity

is a non-essential factor, its influence is low. For movements on very

large scale ( such, as cyclonic vortex ) buoyancy force cannot be of

any significance. Here the determining factors are the gyroscopic force,

although the elasticity also has some effect.

Thus, the different physical nature of these forces results in

movements, absolutely different in structure and scale, which correspond

to them. This state is found to be convenient. It permits to study each

motion independently, i.e. in the study, for instance, of sound waves

to disregard both the Earth's rotation and gravity, and in the study of

short gravity waves-compressibility, Appropriate simplifications are

also being done by meteoroI6gists, in the investigation of large-scale

movements. This results every time in very negligible distortion of the

type of waves being investigated and in considerable simplification of

the system of equations, related with time reduction of its order. The

hydrodynamic system of equations, initially of fifth order, becomes

divided into two systems of second order, depicting acoustic and gravity

waves respectively, and equation of first order for gyroscopic waves

( inertia waves ).

This is the procedure: in all the cases, when investigation is

required for one particular type of waves in the resolution of concrete

apilied problems. Meteorologist is interested primarily in the largest
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inertial-gyroscopic waves directly related with forecast of meteorolo-

gical fields, forccast of large-scale weather background. He is also

interested in gravity waves in the investigation of local events, The

largest gravity waves are of primary importance in the investigation

of atmospheric tides. Large-scale ( synoptic scale ) waves were studied

extensively by E.N. Blinova and other investigators. Ample literature

is also available on gravity waves, long and short, and questions of

atmospheric acoustics, for instance, on propagation of waves from high

intensity local disturbances. Eut from the point of view of the principle

it would also be of interest without going into individual structural

details of spacific oscillations, to review the spectre as a whole,

defining the interdependence of its individual parts. In this case it

is found, as should have been expected, that between the different

types of waves there is no existence of very shape boundary. There are

transient oscillations, which are affected simultaneously by several

factors.

We are trying to give as complete as possible spectrum pattern

of a system of equations of the fifth order. The problem of dividing

the spectrum into individual parts-acoustic and gravity has been studied

for quite sometime, starting from the above - mentioned monograph of

V.Bjerkness and others ( see also Eliassen, Kleinschmidt, 1957 ). In a

more complete form it is given in an:article by A.S. Monin and A.M.

Obukhov (1958), and also in Eskart's monograph (1960). These works

discussed the model of isothermal atmosphere above a flat Earth. In other

works of the author ( 1961, 1965 ) this problem was generalized for the

case of rotating spherical atmosphere with stratification, approximating

the real one.
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In the resolution of our problem the yariables are divided, and

we obtain a separate problem on eigenvalues for the equation, which

includes only vertical coordinate, and also for the equation with hori-

zontal coordinates. The second equation is quite independent of the.

model adopted for atmosphere's stratification and also remains the same

for a composite atmosphere with variable temperature, for isothermal

atmosphere and for a uniform ocean. This is the so called Laplace's

equation ( tidal equation ), frequently applied in various problems of

the sea and ocean physics. In spite of the " classicality " of this

equation, its theory cannot be called completed. The main contribution

to the theory of this equation was made by the English astronomer Hough,

1897, 1898. He has found the asymptotic solutions and suggested numer-

ical method of solution for the case of an ocean of great depth. Hough's

solutions were successfully applied to the problems of the dynamics of

atmosphere's by Rossbil, Haurwitz, 1937, 1940, and by Blinova (1943).

Blinova has shown, that asymptotic solutions of Laplace's equation in

the theory of tides could also be successfully applied to explain the

centres of the atmosphere's activity also for weather forecast. The

corresponding solutions of Laplace's equation are denoted as Rossbi

waves. The same asymptotes are, generally, sufficient to study the

semi-diurnal oscillations, connected with the tides in the atmosphere

( the reason, why the equation is called tidal ).

However, if the need is to investigate the diurnal oscillations

Rossbi has found his solutions independently, apparently, not knowing,

that this is the ultimate case of Hough's resolutions for an ocean of

of great depth.
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of the atmosphere or any other problem connected with inner waves in

atmosphere, or Rossbi waves in atmosphere not of the Earth, but of fast

rotating big planet, for instance, of jupiter, or the required asymptotics

of the Laplacian tidal equation in opposite extremecase, for low values

of the equivalent ocean depth ( this concept will be explained in Para 5

of chapter 1 ). This type of asymptote could be obtained and it will be

found, that both the asymptotes jointly cover practically the whole

possible range of values for the equivalent ocean depth.

Chapter 1 is introductory. The analysis in it is of the basic

equations of the problem and the above mentioned division of variables is

carried out.

Chapter 2 and 3 are devoted to the theory of Laplacian tidal

equation, It should be mentioned, that here remains a lot which is not

quite clear, for instance, the question regarding invariance of the

number of nodes in fundamental function along the wave mode. True, even

.every incomplete results, obtained in chapter 3, permit to resolve

theorerically the question regarding conjunction of the branches of the

asymptotes at low and high values of equivalent depth. Actually, at

present there is no real theory of special functions, connected with

the tidal Laplac's equation of ( Hough's functions ), such a theory as

available for generally-known special functions, with algebraic, integral

and other relations between them.

Chapter 4 discusses equation, pertaining to vertical coordinate.

The first paras present well known results in connection with isothermal

atmosphere. In the following paragraphs a lot of attention is being paid
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to the main problems regarding disposition of eigen-curves on the plane

of parameters for a more composite model of an atmosphere stratified in

a real way. Since in this case we have an equation with variable fac-

tors, not admitting of a closed analytical resolution, the qualitative

investigations and computer calculations most significant become. The

deduction seems significant regarding alternation of eigen-curves of our

marginal problem with a composite extreme condition, depending on self

parameter, and of a more simple problem with a boundary condition indep-

endent of it. This result will be found indispensable in chapter 6 to

prove the completeness of a system of eigen-functions.

In the investigation of an ultimate case of long waves instead of

natural oscillations it is necessary to investigate the forced oscillations.

This is carried out in the same way, as in Wilkes work (1949), but without

the approximate quasistatistics, as done in that work. Because of this

we can also investigate the region of higher frequencies and analyse the

ultimate transition to quasistatistics. The correlating curve, obtained

in chapter 4, contains the whole frequency spectrum, and unifies various

spheres of investigation.

Division of waves into types could-be carried out in different

ways, It is possible, as it was done, for instance, by Monin and Obukhov,

to follow the behavior of resolutions with variation of the atmosphere's

parameters-compressibility and static stability factor - and in relation

to this behavior to assign the resolutions to one or another ( see chap-

ter 4 ). This division could be done on the basis of various types of

energies-kinetic, potential " thermobaric " and energy, bound with air



elasticity ( elastic energy )- in general the energy blance of oscillat-

ion. This is being dealt with in chapter 5, in which relations are

obtained permitting without calculation to evaluate the share of various

types of energy from the position of point, depicting the given oscil-

lation on dispersion curve.

Energy composition of oscillation is not only a parameter, which

permits to carry out in the most physical natural way the classification

of oscillations; energy is included in mapy important formulas, for in-

stance, it is bound by a simple relation with group velocity. By means

of energy it is possible to clarify purely mathematical facts with

regard to monotony of natural curves. It is the most suitable metrics

for analytically-functional study of equations ( chapter 6 ), whence

ensues the proof of completeness and formulas for expansion according to

fundamental functions. The same metrics is used for the formation of

the perturbation theory for estimating perturbation of spectrum, caused

by an average wind velocity, averaged in altitude; and the weight in

this averaging is nothing else, but the energy density of undisturbed

oscillation.

Thus, chapter 5 is devoted to an all round investigation of this

most significant characteristic - energy. For instance, demonstration

of the " t eorem of virial " regarding equality of kinetic and potential

energy average values in the absence of Earth's rotation is given and

evaluation of the increasing share of kinetic energy with the Earth's

rotation is made. The end of the chapter deals with the problem of

atmospheric wave guides. Short waves are concentrated in separate layers



of atmosphere : short acoustic waves in layers with the lowest adia-

batic sound velocity, i.e. in cold layers at altitudes 17 and 84 km,

whereas the short gravity waves in lower layers of the highest relative

stability at altitudes 30 and 110 km.

It is interesting, that for long waves a unique inversion is evi-

dent- cold layers serve as energetic barriers. The pattern of the

atmospheric wave guides given here is similar to that shown by Pfeffer

and Zarichny (1963) and Press and Harkrider (1962), who obtained it

for a narrower class of waves and frequency interval.

Chapter 6 according to the applied mathematical apparatus is

somewhat different from the others. Here we demonstrate the completeness

( two-fold ) of the system of fundamental functions, obtained in chapter 6.

This is a problem of " non-classical " type. The natural parameter is inclu-

ded in the equation in a split-linear way; it is also included into boun-

dary condition. In this chapter the methods are of functional analysis.

However, reader, not interested in the purely mathematical side

of the matter, could miss this chapter, taking on empirical formulas for

expansion factors of fundamental functions, used in para 5 of chapter 7.

As pointed out in chapter 5, waves of various types have consider-

ably different phase and group velocities of propagation. If in a small

area of space at a certain moment there is a disturbance, from which waves

disperse to all sides, a part of energy, bound with excitation of acoustic

waves, will siread out very quickly and in a little while only the atten-

uating gravitational oscillations will remain in the part of space close

to the source of disturbance.
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In chapter 7 we find the asymptotes of waves, generating from

an instant point source, confirming the just described intuitively

obvious pattern. Asymptotic solutions are very similar to precise

solutions given in the same chapter. Chapter 7 also shows how to apply

the theory of expansion, in the fundamental functions evloved in pre-

ceding chapter, to the problem of disturbance propagation in spherical

and realistically stratified atmosphere.

The content of chapter 8 has already been mentioned.

In conclusion we mention just a few words regarding the specifics

of the present book. It is possible to investigate a very wide range of

events on basis of appraising and approximating considerations, using

mathematical apparatus as simple as possible. This may help obtain

results useful for practical application. However, there are the works

of otherq,more mathematical nature. We speak not only and not so much

of more exact methods of solving the equations. Actually, the parameters

of these equations are naturally known to be of not very high accuracy,

and the equations themselves are sometimes over schematical. At a certain

stage in this case the need emerges to bring up the theory to a certain

degree of logical and mathematical precision and completeness with inevi-

table limitation of physical complexity of the problem. The present work

is exactly in this direction, which obliged us to bring up the reasoning

to some sensible degree of mathematical precision.

Thus, the development of mathematical formalism of theory bothered

us more frequently, than the diversity of conorete geophysical applications.

In this respect very similar to the existing works is a well known Eskart's

book (1960) and an article by I. Tolstoy (1963), the content of which is



only slightly resembling the contents of the present monograph.

Chapter. 1.

EQUATIONS OF THE THEORY OF DISTURBANCES.

1. Equation of motion.

We shall assume, that the atmosphere deviates a little from a

certain mean. state, which is a state of relative calm. In this state

there are no velocities, and temperature, 2, pressure p and density 

depend only on one coordinate - z the altitude. In this case thby are

connected by ratios

= 8 . . = -P

the first of which is the equation of state, and the second - condition

of static equilibrium. Thus, only one quantity' for instance, temper-

ature T(z) remains free. Hence we shall be taking into consideration

most frequantly the temperature of the so called standard atmosphere

( Fig. 1.1. ) CIRA 1961 ( Cosparl International Reference Atmosphere ).

The figure shows, that the temperature curve has two depression - in

stratosphere at an altitude of approximately 17 km and a deeper one in

mesosphere at an altitude of about 84 km. At higher begins the conti-

nuous rise of atmosphere - thermosphere. We assume, that the atmosphere

extends upto infinity and that the temperature rise is infinite. How-

ever, it should always be kept in view, that conclusions pertaining to

Cospar - Committee on Space Research.
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the bottom portion of atomsphere could have physical significance only,

when they are independent or almost independent of the behavior of

temperature curve at very high altitude, about 150 km and higher, where

the applied equations represent extremely inaccurately the real movements

of atmosphere. At these altitudes the significance is acquired by such

factors as non-linearity of equations and viscosity.

Since the equations of motion are written in a spherical rotatory

system of coordinates, there are additional terms - Coriolis acceleration.

The Earth is assumed to be a smooth sphere of radius a, gravitational

acceleration ( which includes also centripetal moving acceleration )

being constant and directed toward the centre of the Earth. In equations

the quantities, which are the products of low deviation of the required

fields from their average values are neglected, i.e.-the equations are

linearized. The obtained system of equations for disturbances of the

first order has the following appearance :

u 1 - - - 2C)cosw - 2wsin(W, (1.1)
t .psine q

- -- - + 2Wcoso u, (1.)

b- g a2 20isinO?/. (1.3)Zt P- z p

Here u,v,w - velocity components of the wind, directed respectively

west to east, north to south and vertically upward; 4 - longitude ;6 -

latitude addition uptori /2; P, j - deviations of pressure and density

from their average values P and .
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FIGURE : 1.1. Standard atmosphere CIRA 1961.

In meteorology it is the custom to neglect the Coriolis terms

containing sin 9. Eckart calls this neglecting as " traditional ". For

the sake of simplicity we make simplification, which would allow to

divide the variables. Apparently, this simplification does not affect

very much the results, which is confirmed by the following reasoning.

In-equation (1.3) the Coriolis term is many orders lower than the gravi-

tational acceleration g, therefore, its disregarding is quite justified.

In the first two equations the Coriolis terms could be of signi-

ficance only in the study of the largest scale movements, And these

movements are highly ansotropic. The horizontal scales of the fine

film - earth atmosphere - exceed many times the vertical scales, corres-

pondingly horizontal velocities are many times greater than the vertical

one. This makes it possible to neglect the Coriolis terms, connected

with the vertical velocities. These terms cannot neglected only in a

very narrow belt around the equator, where cos 9 0. It should be

mentioned, that it would have been highly desirable to appraise more
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exactly the results of this traditional approximation, and the extent

to which the perturbation equations, obtained without the Coriolis

terms could be obtained by perturbation theory, by these terms.

To Euler's equations (1.1)-(1.3) it is also necessary to combine

the equation of continuity

P dP
70 +pi = o. (1.4)

at dz

Here X is taken to be the three - dimensional divergence

X = (v sin0) + .a sinF ae+ a sinO 5 z

Finally, in order to close the system of equations, we require

one more equation. We take for this the adiabatic condition, i.e.

preservation of an3sotropy

da )6 p dP= 0 .
dt p dt

Linearizing this equation we get

zt dz p- at dz

We denote C2 = Ip/p( C - adiabatic velocity of sound ). Using

equation of statics dp / dz = - g? and substituting "?/ 6t from

precedifng, equation, we get

-= - C2px + gaj. (1.5)



(15)

Hence the dashes over p and P will be omited. Thus, we

have the following system :

.u i --1 - 2co cosOT1; (1.1')
at aPsin aec

v= 1 )- L- + 2ccos ~u; (1.2')
at ap )

- _ _ L _ (1.3')
at p z p

d-= - C2 p X + gp . (1.5')at

2. Energy. Potential vortex.

Now it is not difficult to write the law of conservation of

energy for the system of equations (1.1')-(1.5'). For the sake of

convenience we shall analyse complex solutions, keeping in view, that

physical solutions will be obtained, if we take the imaginary portion

of the complex solutions. It is easy to check by simple differentiation

and substitution of time derivatives from equations of motion, that

I u 12+ 1 v12 +Itu\2 + 2xp 12 p2 211Bt P 2 2xp p p

R- e (pu*)I. (pv* sin6 -)+ -- (pw*)
a sin 0 --- c a sin z -

(1.6)
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Here Re means, that imaginary part was taken, asterisk - complex

conjugate.

dc2  xR
xC X-l)+R- -Y), (1.7)

where Y = - dT / dz - temperature gradient, a= (x - 1)g/xR - adiabatic,

or equilibrium temperature gradient, i.e. a gradient, at which particle,

displaced adiabatically in the vertical direction has continuously the

same temperature, as surrounding particles. Factoris of high signifi-

cance throughout the theory. It is denoted as the coefficient of static

stability. By integrating (1.6) over a fixed volume the integral on the

right-hand side gets transformed into a surface integral. If the inte-

gration of (1.6) is done over the whole space with appropriate boundary

conditions, the expressions on the right and left hand side will be zero.

This means, that the quantity

ECO 2{o - Iu12 1 v2+ 1. 2  1 2 +J 2 2xp
o o

.+ 2 p - c2 2 sin d dfdTdz (1.8)

is conserved. This is nothing else but energy, and therefore, in equation

(1.6) on the left-hand portion - time derivative gives the energy density,

and on the right - divergence of the vector gives the energy flux. In

the formula for energy we shall distinguish four parts : kinetic energy

of the horizontal component of motion

Er = ul V2 sin 0 d dfdz, (1.9)
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kinetic energy of vertical component

EB i2 S P -L W --22  sin ddq &A (1.10)

o 0 0

( hence these two types of energy for brevity will be called horizontal.

and vertical energy ), elastic energy, connected with pressure fluctu-

ations,

Ey 2 2 2 sinO d 6dfdz (1.11)

00 0

and, finally, energy connected with variations of entropy ( thermobaric

energy according Ekcart terminology ),

E = 2 2x I p - c2p 2 sind dcfddz. (1.12)
0o o o 0

The thermobaric energy is directly connected With the buoyancy forces,

affecting particle which has deviated vertically from the state of

equilibrium. If we assume the state of static equilibrium ( = O )

as basic and at the initial instant of movement the entropy fluctuation
C

v p - c2o equal to zero, then, firstly, they will remain

equal to zero throughout the movement time, since from equations (1 .4'),

(1.5') it follows

( p- c 2p ) - ,

and, secondly, thermobaric energy will be equal to erot

and, secondly, thermobaric energy will be equal to zero, i.e. the sum
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of kinetic and elastic energy is conserved. This is the case of the

so called autobarotropic flow.

Energy is a quadratic quantity in relation to variables. It is

known, that, besides the quadratic conservable quantity, hydrodynamic.

equations of stratified fluid also admit a linear invariant - potential

vortex, brought in more fully by Ertel (1942). For non-linear equations

the potential vortex is equal to

g= gradS ( rot V + 20)

p

where S - entropy, S = cv in ( pp -). This quantity could again be

multiplied by an arbitrary function of entropy f (S). Linearizing the

equation of potential vortex conservation, da / dt = 0, we get for

the linear system the equation of potential vortex of the following type

8 + v - +o = 0, (1.13)
St a3e a

whereCIno - potential vortex component of zero order in relation to

disturbances, i.e. it is composed exclusively of values, pertaining to the

basic stationary state, and ~ I - component of the first order. It is

easy to check by direct differentiation and substitution of derivatives

from equations (1.1')-(1.5'), that

i (sin u) 1 -v +
at asing a sinI aa4 p
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+ -i- = v 1 = 2~oos . (1.14)

This is the vortex equation. If the model of flat Earth is

analyzed on the assumption of Coriolis acceleration invariability, we

get the conservation law of the first order potential vortex,

-- = o
at

an equation obtained by Monin and Obukhov (1958).

3. Laplace's equation of the theory of tides.

Let us take first the case of two-dimensional motion. For us now

it will be just a formal model, more simple than the general case of

three-dimensional motion. But to this model it is also possible to give

a physical meaning, as it is usually done in meteorology, if it is taken

into account, that the Earth atmosphere is a relatively fine film. There-

fore, in the first approximation it could be assumed to be two-dimensional,

averaging its parameters in thickness. Exactly the same equations are

obtained in the study of surface waves in a uniform ocean. Two-dimen-

sional equations could be formally obtained from three - dimensional,

assuming vertical velocity to be equal to zero, and the other parameters

independent of altitude. Equations (1.1'),(1.2') and (1.5') give

1 - 2W cos v,

at - a? sin aT

_v 1 + 2cocose u,
t a ap

- O2 pX. (1.15)at
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To start with for the sake of simplicity the Earth's rotation is not

taken into account. Then in this system it will be necessary to assume,

that CO = 0 :

at p sing aC9

t a 9
ap

P= C 2 X . (1.16)

By differentiating the third equation by t and excluding u

and v by means of the first two equations, we get the wave equation

P

2 1 1 1
Ptt = C + sn1 Ap ).S sin2 sine s a O( 2

a sin a

If the resolutions are assumed to be dependent on t by exponential

i t
law e , the p will meet the equation

2

2- 2 - A p. (1.17)
a

In other words, p should be the fundamental function of Laplacian

operator. Obviously, the Laplacian operator did not result by chance.

For system (1.16) there is separate direction, it is invariant in res-

pect of selecting spherical coordinates, or invariant in relation to

swingingtof sphere. Therefore, differential equation of the second

order for the scalar value should also be invariant in relation to these

swings. The most common equation of this type is the equation (1.17).
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Thus, the appearance of equation (1.17) has a purely algebraic cause.

A different pattern is evident for the system of equations (1.15).

Here there is one separated direction - direction of the axis of rota-

tion of the Earth's. The system is no longer invariant in relation to

any swings, but variant only in relation to swings around this axis. We

carry out the same procedure.: of excluding u and v, in the case where

it is done at once in the simplest way, assuming dependence of resolu-

tions on t exponential. From the first two equations

iu = - 1 -2 - 20 cosEv,

apsin acP

i -v = 1 - + 2ocos 6u
a

we express algebraically u and v through p :

1 . cos8 1 Iu 4ao(f2 _-cos 2
)  .f 8 sine .. p

i_ + ct - - . (1.18)
4a 2 (f2 cos 2  ) a f a P

Here f = 0 / 2C0- dimensionless frequency. It is inverse to

period of oscillations, expressed as semidiurnal.

Substituting u and v into third equation we get

2 2

- bp = C FP, (1.19)
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where

f2 sinS 0 i ctga
F sine f2_cos2 2 f

co2 i ct.0 8 1 2+ L + .2 (1.20)

S2cos2 f sin2 2~

Operator F could also be written in the following way :

Sff 2sin 20 a + if (f2+cos20)

f2_cos 2  (f2cos2 )2 a (f2 _cos2 )2  aL'

where L - the usual Laplacian operator on single sphere. Hence it is

clear, that operator F- is Laplacian , perturbed by terms, which

convert into zero, when p = 0 ( i.e. f = Co ). This operator genera-

lizes Laplacian in anisotropic case. Equation (1.19) bears the name

of Laplace equation of the theory of tides, or tidal Laplace equation,

and the operator F- tidal Laplacian.

4. Three - dimensional case. Equation for divergence..

Let us go back now to the general case of three-dimensional

equations. For solutions, depending on t according to the law e

we have a system of equations :

iTu = - 1 2Vcos v, (1.21)
a? sinO a

idv = - l - + 2wocoso u, (1.22)
ap

i~= - , (1.23)
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S- W, (1.24)

ig p = - c 2 X g-p w. (1.25)

Here C0 could only be material, since the energy has to be

preserved and there cannot be indefinitely increasing or transient

solutions.

We solve the first two equations for u and v. We now obtain

the known formulas (1.18). Substituting these expressions into the

formula for divergence X, we get

X = + i F 4 ), (1.26)
Sz a 2 0 P

where F - the tidal Laplacian. From (1.23) and (1.25) we exclude pressure

1 1 -P 2
i0= - ( - g.u+ gw +xgX - -= - dz x  -

P P

From here by means of ( 1.24 ) we exclude density

2 .(x - ) gX - 2 x (1.27)

Substituting into formula for divergence ( 1.26 ) pressure p,

expressed through X and W formula (1.25)

S+ -1 F ( - C 2X + gW ). (1.28)
0a
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Now we get two equations (1.27) and (1.28) for X, w. Hence we

exclude w, for the object of which we apply to both portions (1.28)

2 8
operator 0 - g We shall have

2) z
2 d 2  xg X F -X 0. (1.29)

Thus, we have one equation for one variable quantity. X. The

given method for exclusion of variables is used in the theory of tides

( see, for instance, Wilkes, 1949 ). But there the analysis is of

somewhat simplified equations ( approximation of quasistatistics ). The

simplification is that in the initial system of equations vertical

accelerations are .neglected, i.e. the left - hand portion of equation

(1.3) is assumed to be zero. Correspondingly equation (1.29) is simpler

with the use of quasistatistical approximation : it is short of two
22

terms C- X and X.
g

It should be mentioned, that the only characteristic of the

atmosphere's stratification, included in the obtained equation, is

C2 = RT. Instead of c2 we shall bring in sometimes equivalent alti-

tude of uniform atmosphere H(z) = c2 /x g.

For the sake of convenience we also carry out replacement of

variables removing the term with first derivative in altitude, i.e.

which brings the equation to a self-adjoint type

X =  dz e Y2x
S H(z) , x = y x
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These formulas could also be written in this way :

x =-In - X = 1
ppo

where po - is the pressure near the ground.

In the new variables we shall have

_ - 9 -- F( -y- y 0 (1.30)xx 2 2 g xg -)

5. Division of variables.

In equation (1.30) we divide variables. For this we assume

y (p, BX ) jJ('fe)y Wx). (1.31)

For each of the multipliers we'll have a corresponding equation

2 2
F + a = 0, (1.32)

y + 1( 1- -xH )+ y = 0. (1.33)
xg h xgh

Here a new constant h appeared as the invariable of variables

division. This is not only a formal constant, it has a certain physical

meaning, about which we shall speak further. As it will be shown, the

solutions exist only with material values of h. But this constant could
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be both positive and negative. In equation (1.32) only the horizontal

coordinates are included. Parameters included in.this equation ( earth

radius and angular velocity ), characterize horizontal structure of the

atmosphere. In equation (1.33).only the vertical coordinate and equi-

valent altitude of the homogeneous atmosphere H, characterizing vertical

stratification of atmosphere are included.

Thus, equation (1.32) is obtainable with all possible models of

the atmosphere's vertical structure, whether it is isothermic atmosphere,

or the standard atmosphere taken in this work, or a homagen:eousocean.

Equation (1.32) is also obtainable even in the study of such a simple

model as two-dimensional compressible film in the field of Coriolis

forces. In the last two cases equation (1.33) is not presen# ; h does

not appear anymore in division of variables. In the case of a homO--

eneous; ocean h means simply the depth of this ocean, and in the case

of two-dimensional film h = c2/g, where c - adiabatic velocity of

sound , c2 = / .

Thus, while we are dealing with horizontal structure of oscil-

lations, the atmosphere could be replaced by ahomogeneous ocean of depth,

h natural oscillation of which has the same frequency and horizontal

structure (cf, 6 ), as the analyzed oscillation of atmosphere. This

is why h bears the name of dynamically equivalent depth for the given

natural oscillation in distinction from statically equivalent depth H(z).

If we are ooncerned only with the vertical structure of oscil-

lations, we apply equation (1.33), and the adopted horizontal model,

i.e. parametersCO and a will be found to make no difference. In par-
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ticular, it could be assumed, that the Earth is flat ( a-- 0 ) and

does not rotate ( CO---1P). It has already been said, that at o -- 0

operator F converts into Laplacian on a single sphere, and at a -- CP
1

the sphere itself converts into plane; - F in this case tends to
a

Laplacian on a flat plane. Equation (1.32) changes into equation

h 2 O (1.34)

which is an ordinary two-dimensional wave equation on a flat plane. Phase

velocity of these waves is 1, since is frequency. Thus, the

meaning of parameter h is clarified from one more side, from the view-

point of its role in equation (1.33). If the vertical structure of

atmosphere and the given oscillation y(x) is preserved, the atmosphere

assumed to be horizontally flat and non-rotatory, and the solution to

be sinusoidal, then h is equal to a depth, at which phase velocity.

C= (1.35)

It should also be additionally mentioned, that the model of flat non-

.rotatirg Earth represents very well the horizontal structure of oscil-

lations of not very large horizontal scale, when the curvature of the

Earth and its rotation have no appreciable effect.

Equ'ations (1.32) and (1.33) should be resolved under certain

limits. As regards the equation (1.32), the question here is quite

clear. This equation is on a closed sphere, and the requirement is only



(28)

the regularity of the solution, since in this case there are no boundaries.

Equation (1.33) requires two boundary conditions, as this equation is of

second order in x. One of these conditions is set on the Earth's surface.

Actually, on the surface of the Earth it is necessary to have w equal to

zero, and hence to obtain the required boundary condition for y ( it

will be obtained further ). As- regards the condition on infinity, it

should be mentioned, that since H--;c at x--- co , the solutions of

equation (1.33), as can be easily proved, approach very quickly ( faster

than the exponent ) towards infinity, except one, approaching just as

fast as the exponent towards zero. If limits for solutions are set at

infinity, then out of all the solutions only one remains-transient. This

is the condition that will be adopted.

Now let us return to boundary condition on the surface of the

Earth. Let us also find in the form, where the variables will be

divided.

Zo = ' X e" f (C, a )T Cx). (1.36)

Then equations (1.27) and (1.28) will be :

=( - 1 ) gy - xgy',

( + - )W + - =(--) y. (137)
h 2H H h

Resolving this system as algebraical in relation to w and w', we

find w
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2 g + H [y, 1
( - ) = - xg + ( --- -- ) (1.38)

Out of this relation it is possible to findz) , after y has

been found. As mentioned previously, it is required, that on the surface

of the Earth TO = 0. For those solutions, in which _- - h this

is equivalent to boundary condition

y+ ( -- - - )y =o x =0. (1.39)

As shown by (1.38), for solutions, in which 2_ - 0, theh

limit of y is equivalent to the limit of

Now our problem is reduced to the following. There are two equ-

ations : (1.32) and (1.33). These contain two parameters Oand h, which

have to be selected in such a way that our equations to have solutions,

meeting boundary the conditions. Each of the equations could be studied

separately. If some value is fixed for one of the parameters, the result

will be a problem on eig:en values of the second. Varying the values of

the first parameter, we find new eigen values of the second. Thus, on

the plane of these parameters we get a set of curves, which we shall name

the self-curves of the equation; In the same way it is possible to plot

self-curves of the second equation. At the intersection points of self-

curves of the first and second equations we will get the required eigen

values 0 and h, at which both the equations will have the solutions.

6. Peckeris solution.

A unique case occurs at -2 = g/h. Uptil: now the solution was
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of equation for divergence X, or for y. After the y has been determined,

the values should be obtained of the remaining quantities, including w.

As the equation (1.38) shows, that at 2 = g/h there would be solution

w, it is necessary, that

Y - -- y 0. (1.40)

Thus, besides the fact, that y should satisfy differential equation

of second order (1.33), it should also be the solution for the first order

equation (1.40). If these equations were independent, then, as a rule,

there would not be these solutions. But here, it seems, the following

interesting state occurs. For any 0 and h, bound by relation 2- = g/h,

there is indeed a soultion for (1.33), which satisfi6s all the set boundary

conditions and, moreover, the first order equation (1.40). To be more

exact, it will be shown, that at O-= g/h any solution of the first order

equation satisfies also the second order equation.

We differentiate (1.40) and instead of y we substitute its

expression from (1.40). The result is

H' H 1 2
y" + - h 2 y = 0,

which coincides with equation (1.33) with acounting for C2= g/h. Since

it is assumed, that H increases at infinity, the soultion of (1.40) at

infinity quickly vanishes. Therefore, the boundary condition at infinity

is found to be fulfilled. Boundary condition (1.39) on the surface of the

Earth is automatically satisfied as a result of equation (1.40).
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It would seem, that from the evidence presented, it is possible

to deduce, that any pair of 0- and h values, bound by relation 2 =g/h,

is a pair of eigen values, i.e. that determination has been made of one

2
of the equation (1.33) self-curves - curve O-= g/h. In this case it is

found, this curve is absolutely independent of H, i.e. on stratification,

if only H would increase on-infinity ( sufficient, if it does not

decrease ). However, it may be assumed, that the obtained solution is

extraneous, not corresponding to the physical set up of the problem. In

fact, after the y value has been determined, it is necessary to determine

the values of the remaining unknown quantities, primarily w. Equation

(1.38) is more unsuitable for this object, as both the portions get con-

verted into zero. Application should be made of the system of equations

(1.37), both equations of which happen to be in our case identical. For

determination of w solution has to be made of any of these differential

equations with respect to to has to be solved. In this case it is nece-

ssary to satisfy boundary condition 20 = 0 at x = 0. If solution of

homogeneous equation

H 1 )
h 2

x
is denoted byWO0 ( apparently, tO = exp S (H/h - 1/2)dx). then

0

OO

x 
xZ=O WO H( -x ) y dx,

h

or

x H 1 x x 1 HS - ) dx H (I- xH 2 ( 2 )dx
e )eh dx.

o h o
-LO =e o dx,
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It is easy to see, that with the increment of altitude x at all

values of h , except individual, for which

x 1 H
o2 ( -- ) dxS-h 2 h

H (1- - )e 0 dx = 0, (1.41)

this solution quickly tends to infinity.

Thus, for every h solution for y is plotted, which satisfies

the condition of limit at infinity, but in this case w happens to be

limitless and so quickly increasing, that the energy of oscillations is

found to be infinite. This means, that these oscillations cannot be excited.

As will be shown in chapter 6, the completeness of the system of funda-

mental functions takes place, if solution - = g/h is not taken into

account, i.e. arbitrary solution could be expanded into linear combination

of the remaining fundamental functions. In view of this we shall assume,

that solution O2 = g/h has no physical meaning.

We remind, that at 26 g/h the damping of .y at infinity was

equivalent to damping of o For solutions under analysis at damping y

the vertical velocity quickly increases. If from the initial condition

we set the limit of to, these solutions become superfluous.

We discussed in such detail one particular solution due to the

following circumstance. As we will see further, this solution results in

a whole class of waves, the existence of which was first discovered by

Peckeris (1948) with the use of isothermic model of atmosphere. Here it
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also shows, firstly, that the curve 0- = g/h is a self-curve of equation

(1.33) for any stratification, and secondly, that not the less corres-

ponding solutions should not be taken into account, as they are, apparently,

devoid of physical meaning.

It should be mentioned, that 02 = g/h happened to be self-curve

only due to assumption, that H at infinity does not decrease. Otherwise

it may not be so.

In the next two chapters a theoretical solution will be proposed

for the equation (1.32) for horizontal component, in chapter 4 - theore-

tical solution of equation (1.33) for vertical component.
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Chapter. 2.

LAPLACIAN EQUATION OF THE THEORY OF TIDES.

1. Laplace's equation. Integral relations.

In the present chapter a step-by-step study of equation (1.19)

will be made. In spite of the fact, that, beginning from Laplace, this

equation was analyzed by many investigators, its theory cannot be taken

as completed.

First of all without difficulty it is possible to separate long-

itude Cp, assuming, that (f, a) = ei s c T(cos ), = O'+ 2 .....

Then -. (cos 0 ) satisfies the equation

F8 4+ ah = 0,s gh

where operator Fs - operator F, in which a/ac are everywhere replaced

by is. In more detail

f2 a sine 8 s( + ctge -- ) +sin 2_cos 2 + ctg

2-2 2 2

f2_o j ctg h =o. (2.1)
f fcos sino

Same as 0 or f = 0/2 , s could be positive or negative. Equation

(2.1) includes only s/f, i.e. if there is a solution of for some s

and f, then exactly the same solution is available for -s and -f. In
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other words, the solutions are always available in pairs

+ i ( Lt+s c )e t (cos 0).

Assuming for distretness.,, that s is positive, and o could have

sign. The actual solutions are obtained as real and imaginary parts of

a complex solution. They will have the form cos ( C' t + s c? ) (cos & )

and sin ( Ot + scp) 4 ( cos 0). If s/f > 0, the waves are directed

east to west, if s4 0 O, west to east.

Bringing in a new variable j = cos . We get

(1- 2 -+2 2 d1 1-A dr(

f2 2

f 2 ( 1 2 ) (gh)h (2.2)

Equation (2.1) or (2.2) is also called Laplace's equation of

the theory of tides, and its solutions - Hough's functions.

Equation (2.2) has special points : firstly, those are ends of

segment )= 1 ( or Wt-, ), 'sec6ndly, its value isU = + f ( of

latitude for which cos = + f bear the name of critical latitudes ). If

the solutions are expanded into series within the range of sptcial points

= + 1, it can be discovered, that at each of these points there is

one solution, which is the product ( 1 - #2)-2 by analytical function,

and one solution with logarithmic branching. As regards the critical
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latitude, there could have been danger here, if the solutions were dis-

continuous at this point ( or had discontinuous derivative ). It would

have been necessary to seek conditions at discontinuity see Brilloin

work, (1932), devoted to overcoming the pointed out difficulty . Actually

t is difficulty is fictitious, because in spite of the discontinuity

factor of the equation, it is easy to show by expanding solutions at

these points into series, that they are continuous and even analytical

within the region of these special points. -There is one non-trivial

solution, which converts at a special point jointly with its derivative

into zero, and for other solutions the relation is fulfilled.

( 1 - f2 ) ( ( + ) = 0.

Anyhow the existence of critial latitudes have still one compli-

cation, which we shall discuss later.

Besides,the azimuthal wave number s, equation (2.2) includes

two parameters : oscillation frequency f and the parameter y, which

will be used in this chapter instead of dynamically equivalent depth h.

Complications, connected with formal presence of special points,

could be avoided, if following Eckart (1960) equation of the second order

is replaced by a system of two first order equations, introducing new

function.

Ir 1~i--vo-I- pZ~ ~,
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- 2) + \ (P)=\ - - 2j (4). (2.3)

The first one is used for determining the functions , then

the equation ( 2.2 ) gets reduced to the second equation only.

Now we prove, that for any real value of f the eigen values of

y are always real. With this object we multiply the first equation by

S(Y) ( the asterisk means complex conjugate ), the second equation

is replaced by the complex conjugate and multiply by (C ), we add

these equations, divide by 1 - I2 and integrate by Y from - 1 to 1.

Herewith it should be mentioned, that although the points at the ends

are special, the integration is possible, since the solutions convert

2s
into zero because of ( 1 -J 2) 2. We shall get

1 2_ 2 2 1 2
0 = 2 2 dp + 2 2 2 d

-1 1 - -1 f (1- )

or 1 f2 1 2  1 d + 2 d
I -U2 2f du, -11 l f-F( 1- # 2 ) (.4)

1 f (2.4)

) 2 dy
-1

Hence it follows, that y is real. From this formula it is

possible to make one more important deduction. Eigen value y, generally

speaking, could be both positive and negative. But for 2 >1, i.e.

for periods less than semidiurnal y is always positive.
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In exactly the same way it is possible to prove one more important

relation-orthogonality of fundamental functions lp and * 2 for various

y ( at one and the same f ). With this object we write down all the

equations which satisfy 1ii '4 4i

~ ) d sfJ 1 1

(1- d + - 1 2 1  1 2P2

1_ 2 129

1- 2 d 2= U _ Y2 2 2

The last two equations are replaced here by their complex conjugate. We

multiply them respectively by 2, 2 , l l , from the sum of the

first and the fourth equation we substrait the sum of the second and third,

divide the result by 1 - ) and integrate from - 1 to 1. At yl ' y2 we

shall have

1

S 1 2a = o. (2.5)
-1

2. Fundamental curves. Asymptotics at low y.

Thus, setting arbitrarily the values of parameter f and deter-

mining eign values of parameter V, we get in plane ( , ~) a set of
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fundamental curves. Simple reasoning permits to fix, that these curves

cannot intersect. Indeed, let us assume a different case. Let it be,

that at f, approximating certain value fo, two eigen values V1 and 2

merge into one, - o. In this case the fundamental functions either strive

towards two different, linearly independent functions, or to one and the

same. The first is-eliminated by the condition, that there is only one

solution, which at the end of the segment converts into zero, whereas

all the others convert into infinity. Thus, there cannot be two linearly

independent solutions, regular at the end of segment. 
The spectrum of

eigen values is simple.

Now let both the fundamental functions strive towards one and the

same function, i.e. V 1 1 o' V 2 - - 'o' On one hand it could be assumed

that *l,' "V2 and hence their limits as standard, * o ; dM = 1: On

the other hand, Vr and l 2 are orthogonal toward each other [see formula

( 2.5 ) . Then within the limit * * d = 0. The obtained cont-

-1

radiction proves, that with continuous variation of parameter'f there

cannot be the merging of eigen values and fundamental functions, i.e. in

the language of algebra, there cannot be formation of Jordan cage. This

is a simple result of self-adjoint or the orthogonality of fundamental

functions.

Let us carry out now a more detailed investigation of the shape

of natural curves and their disposition in plane. Let us analyse first

their ultimate behavior at some extreme values of parameters. We start

from two simple cases, which were well known at least to Margules (1893)

and Hough (1898). The first of these cases pertains to asymptotic beha-

vior of self-curves for high frequencies, i.e. at high / values. In this
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case the system ( 2.3 ) could be approximately written as

(i 2 2 2

~(1- 2) - - f2

From here we may exclude the auxiliary variable , thereafter

obtaining for

2 S 2+ f2__
C 1 - 2 ),f" - 2U - P2 24 o=0.

This is nothing else, but Legendre equation. It has uniform

solutions at f2 y = n ( n + 1 ). In this case = PS (U). Thus,

we get the following asymptotic formulas

p ( n + ,

n

n = S , S + 1, ...... ( 2.6 )

Actually these asymptotics were obtained in chapter 1, when as a result

of ultimate transition LO--- O equation ( 1.34 ) was deduced. True, there

was one more ultimate transition, a- -c e But if the last transition i

is not implemented, the operator will become Laplacian on a sphere of

a radius, eigen values of which are - n ( n + ) / a2, and the result



is asymptotic ( 2.6 ).

Fig. 2.1. Asymptotic behavior of self-curves of Laplace

tidal equation at high y-1

-1 n( n + 1 )
a) f S

b f-1 1 1
n( n+l )

To illustrate the obtained results we shall use the plane

( f-1 ). This is convenient, because f- is proportional to

period, and ' - to dynamically equivalent depth. Self-curves of equation

( 2.6 ) are shown in Fig. 2.1. by lines, asymptotically approaching the

abscissae at -1 -- co . Such is the first of the known asymptotic

formulas. But, it turns out, that aty -1--4 co all curves are not

approaching the abscissae. The second known asymptotic curve pertains
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-1 I hscfetesse ol

to the case of high -1 and finite f. In this case the system could

approximately be written as :

(1- 2) d -

Here it is easier to eliminate instead of ,. For we

2

(1- ~ 2f - 1 2 + - = 0.

The result is again the Legendre polynomial, regular solutions

of which are available, if s/f = n( n + 1 ) In this case P (/A).

As regards the ~ , it could be shown as a linear combination of two

adjoined Legendre polynomials. We have the following asymptotic concept :

n2 (n-s+l)Ps + (n+l)2 (n+s)Ps
Sn+ n-12.

f n--- n + 1 ) 2n+l 2.7

n = s, s + 1,

Thus, as the first asymptotic term we get the equations of

horizontal asymptotes. Fig.2.1 also showu these asymptots. In para 4

both the given asymptotes will be made more exact.



The following condition should be mentioned. While the asymptote

(2.6) does not depend on the sign of F(at least the given chief term ),

formula (2.7) gives positive values of f, i.e. pertains to waves, propa-

gating east to west.

Thus, according to behavior at y all the self-curves of

Laplacian tidal equation are divided into two groups-some 
approach to

abscissae while, others step out on horizontal asymptotes,distinct from

the abscissae axis. Following Hough we shall call these curves of the

-1

first and second nature in relation to highy . With one and the same

fixed s there is a topmost curve among those of the first type, which cor-

responds to n=s, and they accumulate toward the abscissae. Among the

curves of second type the lowermost also corresponds to n = s.

We are speaking here.only of positive values of parameter -1. If

we apply negative values, then first of all it will be noted, that there

cannot be any asymptote at /f/-~o , since there is no existence of -1

negative values at /f/ > 1, as pointed out in the preceding para. On the

contrary, asymptotics curves (2.7) are totally retained even at negative

-1l i.e. at ,-l.- -o . The curves approach each of these horizontal

asymptote from both sides at 7
1 -' -  c  and at -- l -oo

-1

In chapter 3 we shall obtain new asymptotes, at low y-. It will

be found, that the activity region of both the asymptotes jointly cover

practically the whole range of values and depict wholly all 
the self-curves

3. Conversion to type convenient for application of Galerkin's method.

We pass on to the plotting of algorithm for calculating self-

curves of the Laplacian tidal equation. First of all we note, that the
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fundamental function asymptotically is either Legendre function PS (A),

or a linear combination of two such functions. It is also natural for

the remaining parameter values, when asymptotes are inapplicable, to

seek solutions in the form of linear combination of some number of these

functions P pS PS
nlfunctio nl+ ' " nl+N i.e. to approximate differ-

ential equation by a finite algebraical system, or in other words, to

apply Galerkin method. As a preliminary the system of equations should

be converted to a more convenient form. Why the system ( 2.3 ) is incon-

venient,. could be explained in the following way. Differential operator,

included in our equations, ( 1 - /1 ) d/d/ , applied to Legendre

polynomial PS , same as the multiplication of this function byL , is
n

replaced by its linear combination PSn-1 and PSn+1 . But, unfortunately,

if the equations are used in the form, in which they are written, the

Legendre functions would have to be multiplied also by 2 , and this

will result in the appearance of functions PSn-2 and PSn+2

This will make the system of equations considerably more complex

and bulky. It has to be converted so, that there is no multiplication

by , 2. We denote

2 2  d s
/)d 2  F 1-

( this is nothing, but the operator in the left portion of Legendre

equation ). The result of this second order operator's effect on Ps

n

is very simple
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LP s  = - n ( n + 1 ) PS
n n

Let us apply to the second of ( 2.3 ) equations differential

operator ( - 2 ) d/d# - sU / f , and then substitute 1(1- 2

d/dp - s / f from the first equation. We get

2 - 2 ( d-(f- 2

_ 2 22 22 ) - (1- 2)d . l -2 22)da

By expanding in the left portion the product of operators and

dividing equation by 1 - 2 , we shall have

2 2 2 +

2 2 2 dg f

or

+ + 2)r - (1- 2 ) -d

This equation will be the first of the two, which compose our

working system.

The second equation is obtained in the same way, but now to the

first equation of (2.3) we apply operator (1- 2 ) d/dy + sp /f, and

the expression (1- ,2 d/dh + sj /fJ we substitute from the
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second equation. Then we get

S(1- 2  ) d s a22

dp d f 2 A1) *
f(l - . )

f 2 2 s 2 (f 2_ 2

1 - 2  f2

The term ( f2 - ,2 )y4 we convert in the following way.

We replace it by ( 1- 2  + ( 2 _ 1 )y P and the

first of the two terms we again express from the second equation. We

shall have

df 12) d 2 2d dp f 1-2 Vd~L (- ~u2 d 1-

By conversion, we finally obtain

f f 2 f d

Now we write jointly both the obtained equations :

( L + ) = (- + 2) - (1- ) 2 ) d

[ 2 f 2 f d/92A
L - - + + (2-1 = (- - 2) + (1- 2)

( 2.8
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This system has a higher order ( fourth ), but due to above

indicated reason it is found to be more convenient for the application

of Galerkin's method. Moreover, as will be seen from the next chapter,

this system will help to find the asymptotics of characteristic curves

at low ' -1. However, there are some questions, as to whether the

system ( 2.8 ), being the result of system ( 2.3 ) contains extraneous

resolutions ? After all it was obtained by rising the order of system.

Having found eigen values of this system's parameters, do we have the

assurance, that they pertain to the initial ( 2.3 ) system ? In the

" Supplement " to the present chapter this question will be investigated.

Here we only formulate the result. It is found, that extraneous solu-

tions are indeed present. The system ( 2.8 ) has regular solutions at

all whole values s/f and at any '~ , i.e. there is the appearance

of characteristic curves-horizontal straight lines, passing through all

the points of axis s/f. At the same time they are not the character-

istic curves of system ( 2.3 ). Other system does not have extraneous

solutions system ( 2.8 ). Now we can safely utilize this system.

Here is another form of the Laplacian tidal equation. This form

is investigated in the Yaglom's article (1953). This work investigates

the example, mentioned by us of the two-dimensional flow on the surface

of a sphere. The field velocity is shown through current function and

potential. The system of equations in Yaglom's article with slightly

changed denotations is as follows

ifLt+ is4+ L + (1- 2) d(2.9a)
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ifLC + is L' - (1- A2 -?+ LM =0, (2.9b)
dp

if y7 + L = 0, (2.9c)

where4f , and TJ - respectively current function, potential and

pressure, or more exactly their portions, depending on polar angle. Other

notations are the same as above. Let us fix correspondence between the

tidal Laplacian equation and the system ( 2.9 ). Let -* ,- be

solutions of Laplace's equation ( 2.3 ) and hence also of ( 2.8 ). We

determine functions , D , and in the following way. Assuming

= J • (2.10)

Assuming further, that is determinable from equation (2.9c),

and . from equation

s 1 u2 d- (2111)
f if d

Then these functions satisfy the whole system ( 2.9 ). This fact

is proved in the " Supplement " to this chapter. The meaning of the sys-

tem ( 2.9 ) is the same as of system ( 2.8 ) : it is redifferentiated

system of Laplace's equations. When the system ( 2.9 ) was being obtained

in Yaglom's article an excessive differentiation was carried out in

transition from velocities to equation for vortex and divergence. It

will be shown, that sometimes it is convenient to use the system ( 2.8 ),

sometimes system ( 2.9 ).

4. Calculation of characteristic curves of Laplace's equation of the

theory of tides.
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We shall seek solutions in the form of series of fixed and adjoined

Legendre polynomials

cc_
2n + 1 (n - s)

= a 2 n (n I2 n
n=s

o

bI bn__ 2n + 1 (n - s) pS (2.12)n n 2 (n + s)! n "

n=s

We substitute these series into system ( 2.8 ), using in this

case the known recurrent relations :

S n-s+l p + n + s p
n 2n+1 n+1 2n + 1 n-l,

dPs
2 n n(n - s + 1) pS (n+l)(n+s) p

d(i- 2n+1 n+1 2n+l n-l,

LP s = - n(n + 1) PS
n n

Equating factors at PS with similar indices, we get :n

(n-s)(n+s) (
-n(n + 1)+ b (2n-)(2n) + n + 1)a

(n-s+l)(n+s+l) s
(2n+l) (2n+3) f n+1
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2
- n(n + 1)- S + S - a n

(n - s)(n + s) (8 n-l)b
(2n - 1)(2n + 1) f n-

+ (n- s + l)(n + + 1+ ) )13)
(2n + 1)(2n + 3). f n+l. (2.13)

From this system it is possible to eliminate either an or bn

Eliminating bn we get for an a differential equation

-lan= L a + Mnan + Lan+2  n s, (2.14)

where

f2 _ 1M = +
n + n Sa

f f

(n - s)(n + s)(-- - n + 1)+ +
(2n - 1)(2n + 1)( -- + n) - - n(n - 1)

(n - s + l)(n + s s 1)(- -- + n + 2)
+ +

(2n + 1)(2n + 3)(- - n - 1) - (n + l)(n + 2)

L (n + s + 1)(n + s + 2)(n - s + 1)(n - s + 2)

n (2n + 3) ( 2n + 1)(2n + 5) - (n + 1)(n + 2)1

we wont write equation for bn , as we wont have to use it further.

Instead we shall write differential equations, which could be obtained

from the system of equations ( 2.9 ). If it is assumed, that
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~4= bn ( 2n + 1 (n -s) ps
2 (n s)! n

n=s

= 2n + 1 (n - s) ps (2.15)
n 2 (n + s)! n '

n=s

then apparently,

an 2n + 1 (n - s)! P
= f n(n + ) 2 (n + s) n
n=s

and

s n(n + ) (n - s)(n + s) n + 1
f -n (2n- 1)(2n + n n+l +

n na ++ (n- s + 1)(n + s + 1) n a
(2n + 1)(2n + 3) n + 1 n+1)

sf 2
N(n + 1) + n(n + f  a n

.(n - s(n + s)
= 2n(n - 1)(n + 1)bn 1 +(2n - 1)(2n + 1) n-1)

(n - a + 1)(n + s + 1)n(n
(2n + 1)(2n + 3) 2n+. (2.16)

This system is reduced to one equation
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L b + Mb + Lbn 2 = 0, n > s, (2.17)

where

= (n (n + 1) (n )(n + )M = n(n + 1)- - 2 2 + +
n f (2n - 1)(2n + 1) (n - 1)2n2 -

+ sf - (n - )nf21

n2(n + 2)2 (n - s + 1)(n + s + 1)

(2n 1 (2n + 3) (n + 1) 2(n + 2)2 -1

(n - s + 1)(n - s + 2)(n + s + 1)(n + s + 2)X

L x n(n + 1)(n + 2)(n + 3)

n (2n + 3) (2n + 1)(2n + 5) (n + 1)2(n + 2) 2  -1

System ( 2.16) is similar in form to ( 2.13 ). This system

is investigated in the mentioned Yaglom's article. Generally, everything

pertaining to system ( 2.9 ) and its consequences is borrowed from this

article.

Before, explaining, in what way equation ( 2.14 ) could be used

for calculating eigenvalues of y , we return to previously obtained

asyymptotic formulas ( 2.6 ) and ( 2.7 ) and find their exact defini-

tions. One of the possible methods for finiding asymptotes at --l. o

consists in expanding all values a , bn and f into series according

to the order of ) and equating of terms, containing in the. same order,

from both sides of equations ( 2.13 ) or ( 2.16 ). In this way it is

possible to obtain, for instance, first exact definition of asymptotic

formula ( 2.7 )
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(n - s)(n + )(n + 1) 2 +
s- n(n + 1)+ (2n - 1)(2n l+ 1) n2

+ (n + 1 - s)(n + 1 + s).n21 (2.18)

(2n + l)(2n + 3)(n + 1)

In the same way it is possible to obtain also the following

terms of expansion, although there is no special need for that. This

method is described in detail in the author's article (1961). We

demonstrate again the first exact definition of symptotic formula (2.6)

-1-- 2 1 8 0 (2.19)f2 n(n + 1) fn2 (n + 1)2

Another possible method for finding asymptotes. is shown in

Yaglom's article. It consists in finding the solution required for an

infinite system of equations ( 2.17 ). This system is recurrent, there-

fore, the solutions always exist, at all the values of parameters 
f

and . However, what we need is not just any bn , but only those series

at which the series (2.15 ) converge, i.e. bn should tend to zero at

n- oo so, that : b2 co . This condition should be obtained for

selecting the eigen value for all the parameters. For asymptotic

appraisal it may be assumed, that all bn , for certain value of n, are

equal to zero. Then instead of the infinite system of equations we get

the finite system.

System ( 2.17 ) binds all factors through one. Therefore, it



expands into two. For one of these n = s, S + 2, .... , and for the

other n = s + 1, s + 3, .... The solutions correspondingly expand into

those, for whicht is even, and odd, and into those, for which is

odd, and W even.

In order that the system would have non-trivial solutions, its

determinant must be equal to zero. For the first of the systems

M L 0 0 . . .
s a

L M L 0
L s+2  s+2

= 0, (2.20a)

O L M Ls+2 s+4 s+4

S. . O LN_2  MN

and for the second

M1 L O O

L M L O
s+ 1  s+ 3  8+ 3

= 0, (2.20b)

O L Ps+ L
8s+3  +5  s+5 . .

S LN-1  MN+ 1

At ' -1-- the diagonal elements approach to constants, and

the non-diagonal elements have order 0 ('). In the expansion of deter-
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minant all products, etcept the product of diagonal elements, have

order of at least 0( 2 ). Therefore, as the first approximation it

is possible to assume determinant as equal to product of diagonal ele-

ments. In this case equation ( 2.20 ) is denoted simply as

,-

Ms " Ms+2 . Ms+ 4  . I MN = O,

Ms+l. Ms+3 . Ms+5 . . MN+1 = 0.

Hence it follows, that for every n s a there is a solution

at M = 0n

(n - 1)2(n + 1)2 (n s)(n + s) +

S= n(n + 1)+ (2n - )(2n + 1) (n - l) n2 -1 +

+ sf - (n - 1) nf2

n2(n + 2)2(n - s + 1)(n + s + 1)

(2n + 1)(2n + 3) (n + 1) 2 (n + 2)2 1 +

+ sf -(n + 1)(n + 2) f2]

The roughest approximation is simply T = n(n + 1). In the

right-hand portion of the above formula f could be substituted by

this rough approximation, and this will change the whole formula only

to terms of further lower order. We will get



s (n - 1) + 1)2(n- )(n + ) +

(2n - 1)(2n + 1) (n 2 n - 1 +

+ 2s2n-(n + )2

n2(n + 2)2(n s + 1)(n + s +) . (2.21)

(2n + 1)(2n + 3) (n + 1) 2 ( n + 2 ) -1

- s 2 n-2 (n + 1)

This approximate formula was obtained by Hough. Further it will

be seen, that it gives a good approximation in a wide range of -1

values, and only for the very low values of this parameter should be

replaced by another formula, which will be carried out in the next chapter.

It should be mentioned, that formula ( 2.18 ) could be obtained from

( 2.21 ) by expanding into series in order of I . Formulas ( 2.21 ) and

( 2.18 ) are very similar in accuracy, and only for some low values of

n and s the simpler fornula ( 2.18 ) gives appreciably worse results.

Hough's formula ( 2.21 ) pertains to oscillations of second type.

Now ina similar way, but with the help of ( 2.14 ) we shall deduce a

formula for oscillations of the first type. Repeating exactly the above

reasoning, we come to conclusion, that there is a need to find such values

of parameters , -1 and f, at which the following determinant will be

equal to zero



L _ - Ls 0 0 .. •
,a I s

-1

-1

Ms OLs+ 1  0 0 . .

I I

L -L
I I

-1

0 Ls+3 Ms+5- y Ls+5.

. . . . LN2N . ... .

e-1
L 0 0 

s + ne

f= 0
- =-N 1- n - n

s+3 s+5 s+5 *

-1
i. 

... LN9MN+ 1

(2.22b)

At f-- oo the diagonal elements increase much faster than the

non-diagonal / the first are of order 0 ( f2 ), the second 0 (1)

Therefore, the approximate formulas are obtained by equating diagonal

elements to zero

-1 f -1

5- s )
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(n - s)(n + s) - -n + 1)

2n - 1)(2n + ) -- + n - n (n -

(n - s + 1)(n + s + 1)(--- + n + 2(
f . (2.23)

(2n + l)(2n + 3) - n - 1 - (n + 1)(n + 2)

Formula ( 2.19 ) could be obtained from here by expansion into

series according to the orders of 1/f.

Formulas ( 2.21 ) and ( 2.23 ) represent oscillations of the

second and first type at sufficiently high -1 values. However, on

one hand, many practical problems require calculation of characteristic

curves in the zone, where these approximate formulas are known to be

useless. On the other hand, having only these formulas, it is impos-

sible to judge, how far they are 6rrect regarding the behavior of the

characteristic curves of Laplace's equation as a whole. With this

object these curves were calculated on electronic computer. The simplest

method of calculation is the solution of characteristic equations (2.22).

The convenience here is that one of the parameters, namelyy-1 enters

in this equation in a " classical " way. Thus, by imparting partial

values to parameter f, we get the usual problem on calculation of eig:en

or fundamental values of Jacobi type matrix. The differential equations

(2.17) did not have this advantage. Both the parameters enter into these

equations in the same inconvenient way.

Let us do some summing up. By raising the orders the Laplace's

tidal equation was reduced to the two different forms, convenient for



expansion into series according to Legendre 
polynomials. The form (2.9)

permits to find a good expression for approximate 
values of *f of the

second type at high^
- 1 , more exact, than the one resulting from the

first form of equations. On the other hand, form (2.8) provides conve-

nient expression for asymptotes of the first type at high 
- 1 . The

form (2.8) results in, what is, apparently, specially important, convenient

method of numerical determination of eigen values of the parameters, in

the next chapter it will be clear, that equations (2.8) 
make it possible

-i
to find the asymptotes at low values dfY

- 1

5. Results of characteristic curves.

Thus, it is possible to find characteristic curves of the

Laplace's equation of the theory of tides by resolving 
characteristic

equations (2.22a) and (2.22b). In practical calculations the deter-

minants were of the twentieth order. Simultaneously with. -1 eigen

values the determination is also of characteristic vectors, i.e. sequ-

ence of a values - expansion factors of functionl from the set

Legendre polynomials. If the eigne values was obtained from the system

(2.22a), the expansion is according to functions p s' ps+2 s+4

but if from (2.22b), then according functions P P s+' S

In the first case * is an even function /, and is odd, whereas

in the second case - inversely. In the first case we name resolutions

as even type resolutions, in the second case - odd type resolutions.

Using the asymptotic formulas (2.21) and (2.23), it should be kept in

view, that for resolving even type we should take in formula (2.21)

n = s + 1, s + 3, .... , and in formula (2.23) n = s, s + 2, s + 4, and

for odd type resolutions - inversely.
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30
f II

250

18 n=3

2012 --- -

9. -

7
6
5

(-3,2) n=2

2

1 2 3 4 5 6 7 8 9 10hKm

0,023 0,045 0,069 0,091 0,114T

Fig. 2.2. Calculated characteristic curves.

Fig.2.2 shows results of calculations on electronic computer of

even type curves at s-= 2. On the right, at high -1 values, the curves

are very well,approximated by those marked with crosses, calculated from

formulas (2.21) and (2.19) ( the corresponding n values are written

next to curves ). In fig. 2.2 is seen a bunch of curves of the first

type, approaching at the axis of abscissae. At - 0 they

approach the axis of ordinates and are being approached on the right by

the second type curves, each moving away from its asymptote s/f = n(n+l).

According to the proved, the curves cannot intersect. The meaning of

figures in brackets will be explained in para 6.
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The Fig. shows, that characteristic curves are present also to

the left of the ordinates axis, i.e. at negative 1. According to the

proved in para 2, the negative eigen values of -1 could be only at

f~l, i.e. s/f > 2. The Fig. shows, that immediately above the point

s/f = 2 appears a bunch of characteristic curves, moving away to the

left and upward. While rising they one by one separate from the bunch

and approach from below the horizontal asymptotes - the same s/f = n(n+l)

asymptotes, as with positives-l for the second type curves. The cal-

-1Fig. 2-3. Characteristic curves in coordinates f

culations lose their accuracy at very low , i.e. within the narrow

hand along the axis of ordinates. Therefore, the calculations do not make

it possible to follow, how the characteristic curves in negative half-

plane enter into axis of ordinates. Two assumptions are possible here:

either they all gather at one point of the axis - point s/f = 2, or each

,of them arrives at its own point. In the next chapter it will be shown,

that it is the first alternative that takes place.
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In Fig. 2.3 a graph has been plotted of the same curves, as in

Fig. 2.1 and 2.2, but in coordinates ( f-1 y ) ( without adhering to

scale ). From this figure it is possible to discern, that it is quite

natural to assume, that curves at negative y and the curves of second

type at positive ' are the same curves, continuously transient from the

left half-plane into right. Nevertheless, coordinates ( f- 1 y- 1 ) will

hence be used as before.

One of the sections of the first type top curve ( n = 2 ) has

many times attracted the attention of various investigatiors; calculation

results are available in literature of this section's characteristic

curve, for instance in Wilkes book (1949). We are speaking here of the

environs of f = 1, i.e. s/f = 2. The frequency of oscillations here

is C = 2 cv , i.e. the period is half a day. The fundamental functions

are asymptotically similar to sin(a t + 2c.+ to ) P2 ( ), which corres-

ponds to the following tidal structure: four junction meridians moving

at rotation speed of the Earth, and the resolution does not convert into

zero anywhere. These resolutions play the main role in the theory of

tides. The value s/f = 2 corresponds, according to our calculations

toy-1 = 0.0899, -which in conversion t6 dynamically equivalent depth

h is 7.86 km. On the axis of abscissae are plotted also h values.

Fundamental functions have the following appearance

r= a P2 + a4 P  + a P2 + ......

2 s/f = 2 our calculations give 6

For s/f = 2 our calculations give
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SP2 - O,08700P + 0,004433P - O,000048P + ... (2.24)

The results are similar to those, obtained by Peckeris (1937)

see also Wilkes, (1949)

The theory of tides is dealt with in detail in Wilkes' book, and

also in Siebert's review (1961). We point out for comparison, that for

the next, second from the top curve of first type, i.e. at n = 4 the

fundamental function at s/f = 2 is such :

1 = 0,576 P2 + P - 0,434 P + 0,024 P + ....
2 4 6 8

Here the predominant is the second component. Fig. 2.4 shows similar

curves, but for negative f values, which, as we know, means wave pro-

pagation west to east. These curves are distinct by the absence here

of the second type curves.

It is most instructive to plot the same curves, as in Fig. 2.1,

but in logrithmic scale, which clearly shows every exponential relation.

Fig. 2.5c -- shows this type of curves. Fig. 2.5 a shows the case of

s = 1, Fig. 2.5b - s = 2, Fig. 2.5c - the case of s = 3. Each of these

figures contains curves of even, as well as odd type. In each figure

there are one or two curves of the first type ( n = s, s + 1 ) and three

bottom curves of the second type. By short dotted lines are drawn asym-

ptotic curves (2.21) and (2123). Here again it is clearly shown, that

these asymptotic formulas quite aatisfactorily depict characteristic-

curves at y -1 > 0.05 - 0.1. In the figures it is clear, that with

reduction of yl almost at once begins to act another asymptotic, as the
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curves cnnvert into straight lines. Long dashes show the straight lines,

which are asymptotically approached by our characteristic curves. We can

see, moreover, that this new asymptotic at-low~ -1 also divide all curves

into two bunches. The top bunch corresponds to exponential relation f =

= const, and the bottom - to relation f2 = const. The number p in the

figure will be explained in the next chapter; this is a number in the

corresponding formula of asymptotics.

2

2 7 2 j -

Fig. 2.4. Characteristic curves for s = 2, f 0.

As will be seen further, the so called Rossbi waves, which are of

high significance in meteorology, correspondsfor the case of the earth

atmosphere toy - 1 values of 0.1 order. Therefore, for their depiction

the asymptotics, obtained by us previously, are quite sufficient. However,

many other questions of the theory of oscillations are bound with shallow
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depths h ( or /-1 ) and the behavior of characteristic curves at these

low values becomes of considerable interest. The fact, just remarked,

of the presence of certain exponential asymptotics at low y-1 dis-

covered during calculations of characteristic curves on electronic com-

puter, made it necessary to investigate this question in a theoretical

way. The obtaining of this type of asymptotics will be dealt with in

the next chapter. It should be mentioned, that finding of asymptotics

at low - 1 requires finer means, than the finding of asymptotics at high

Y-1. If in the finding of asymptotics at high-1 it was possible to

omit the low terms of equations, here we are face to face with the problem

of low parameter at senior derivative.

S
) . . . .6)
0 p.p. ,= 2

100n=3 n=4
10 10

2' 2

" I ---- 0

0 0

100r

1'- 5

3
10

0,001 0,01 0,1, 10y

Fig. 2.5. Characteristic curves in logarithmic coordinates.

a) s = 1, b) s = 2, c) s = 3.
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We have already mentioned the double ultimate transition 6o-40),

a--oo , i.e. transition to a model of flat non-rotatory Earth. What

happens in this case with characteristic curves? If is directed towards

zero, the system (2.3) will be

Cl-t - ( '1 f 2  ),

2 db 2  2 2 'y 2

( -)d - - ( - )a gh

whence

22 2 2aa2 ,
( 1 - ,2 )4 - 2 - 1 2+ = ,

i.e. 1 is Legendre function Ps , a2 2 / gh = n(n + 1). The whole

curve coincides with asymptotics of the first type. Horezontal asymptotes

have withdrawn into infinity. If now a--~oo , the curves concentrate

limitlessly, filling the whole plane, the spectrum converts into conti-

nuous. °If it is assumed, that jointly with a increases also n, so that

n/a---> k ( k-wave number ), the characteristic curve for the given k

will be

6= ~/b k,

i.e. phase velocity of wave is equal to Vg, which is what was pointed

out in preceding chapter. For very long waves, commensurable with dimen-

sions of the Earth, the concept of phase velocity loses-; its meaning.
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6. Wave type and the number of resolution points.

The eigenvalues, disposed on one and the same curve, belong, as

it is said, to one and the same mode or wave type. What characterizes

this wave type? As long as one of the asymptotes is active at high ' -1

i.e. at the base of each curve, the fundamental function-4is similar

to spherical function ( for the curves of the first type ) or to

linear combination of two such functions ( for the curves of second

type ). In this case the number of the curve characterizes the number

of points of the fundamental function. Now we'll introduce denotations

for individual modes. Each curve will be marked by a double number

( n, s ); s - is familiar to us azimuthal wave number, number n for

curves of the first type will have the values s, s + 1, s + 2, .... ,

i.e. this is the n number, which participates in asymptotics _r--PSn(P)

for the given mode. For the curves of second type we shall provisionally

write negative number n < 0, in order to distinguish them from the

curves of first type. In this case n will take on the values -

- s, - s - 1, - s - 2, ... . Thus, for mode ( n, s ), n < 0 the

asymptotics at Y -1---oo will be : - Psjnj (A). Functions ,

, pertaining to mode ( n, s ), we denote through 4 s n, ),

Sn,f:p

As mentioned earlier, the curves in half-plane of negative -l

would be quite natural to consider as continuation of the second type

curves in positive half-plane ( at f > 0, of course ). From one

half-plane they pass into another, breaking along the asymptotes

s/f = n(n + 1). Therefore, for the entire mode as a whole, both in the

region of positive and neative -1 ve retain the same denotationregion of positive and negative ' we retain the same denotation
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( n, s ), Snf 1 Snf . At f < s/n(n + 1) the curve lies in

the half-plane )-l 1~ 0, and at f > s/n(n + 1) - in half-plane

-1 < 0. At f <0 the whole curve lies entirely in the region

y-1 < 0.

The question regarding the number of zeros of the fundamental

function is highly imprtant, and a lot here is not clear to the end.

-1
In the action region of asymptotics at high y -1 the number of zeros

could be found. Thus, for asyniptotics of the first type n > 0, the

number of zeros in function X s n,f ( s ) is equal to n - s, and for

function sn ( o ) one unit higher, n - s + 1 ( we do not count

the zeros of these functions at the end of interval ). For asymptotics

of the second type, n Z 0, the number of zeros in function s nf )

is equal to In -s, and for function An ,~f ( ) it is expressed,

as will be shown in chapter 3, in a more composite way: it is equal

to Inl - s + 1, when In - s is even, and I n - s - 1, when Inl - s

is odd.

Can it be said, that the number of points of the fundamental

function is retained along the whole mode? The usual proof of retaining

the number of zeros in the fundamental function, based on the theorem of si

singleness for differential equation of the second order, is complicated

by the existance of special poi.nts, firstly, at the ends of the segment,

secondly, in critical latitudes. The usual expansion into series

according to orders of( M 1 ) shows, that functions , have at

the ends of segment' -11 1] have a soecial feature of the type (1- ~.A2)s/2

But at f = + 1 the zero order of function rises by a unit, becoming
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equal to (1- 2) (s / 2 )+ l . This indicates, that with positive f, varying and

passing through f = 1, the number of points changes by two. It is pre-

cisely with decreasing f that two points get added; it is not possible

for the two points to get lost, since from the asymptotics at high f it

can be seen, that the extreme, nearest to ends of segment [-1, 1 are the

zeros, and not * . Therefore, the 1 radicals cannot leave the segment.

As regards function $ , the zero order of this function at the ends of

segment is always the same, i.e. no zero can either enter, nor leave

through the ends of segment.

Another possibility of the changing number of points is connected

with existence of critical latitudes. At points p= + f exist resolutions

4 (X), which convert into zero jointly with their first derivatives.

Due to this with continuous variation of parameters the number of points

in function' ~Jcould change at once by two in each critical point, i.e. by

four. In exactly the same way zero number of function can change at

once by four at points on axis ~ , in which conversion into zero occurs

of (s2 / f2) ' (1 - 2)y( these points could be denoted as critical points

of the second order ). Beforehand the possibility cannot be eliminated

of such jump-like variation of the number of points in fundamental func-

tions. It is only possible to indicate those zones of parameter values,

where it cannot take place. This is, firstly, the zone of negative ,

secondly, zone s2 >f and, thirdly, zone JfJ > 1. In each of these

cases there are no critical points either of the first,or sacond order.

It is obvious, that if there are no critical points of the first order

( IfJ~1 ), the number of points in function 4P cannot change, and if

there are no points of the second order (Y Z O or s2 > ), there

can be no change in the number of points in function . But it happens,

that in the first case the number
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of nodes in function is also invariable, and in the second case of

function-/. Indeed, satisfies equation, which is obtained from system

( 2.3 ) by exclusion of 1'

2 r d 2

2 (1 - S 2f1
f2

2 2

2

Assuming, that at the critical point of second order Y =-*,

where s2/f2 - (1 -2)y converts into zero, 4 and ' are equal to zero,

in which case ff1 > 1. We multiply the above equation by 4 and inte-

grate fromr* to 1. After partial integration we'll have

1 2 1j 2 f(l- 2)J

v -2--(lf

Here the left portion is negative, whereas the right positive,

which cannot be. In the same way aty < 0 or s2 /f2 > , if at the

critical point of the first order r = f function 14 and its derivative

-N convert into zero, then by multiplying equation ( 2.2 ) by -4 and

integrating from - f to f, we'll have
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dd-a2 2 d f ( 2_ -2( f(l - 2d

S2 d- .
2f2(1 -A

And here too the left and right portions are of different signs.

Even this incomplete information regarding the number of zeros will be

sufficient to confirm substantially in the next chapter disposition of

characteristic curves.

7. A note on expansion according to Hough's functions.

It is quite common in meteorology to use expansion of various

types of fields according to Legendre functionsJt would be more natural

in many cases to expand in accordance with Hough's functions, specially

if they are properly tabulated. The basis for this type of expansion is

the theorem regarding completeness of the system of Hough's functions. To

be more exact, with all possible eigenvalues of Y is complete on the

segment L-1 1 1. The proof of this theorem is not being given, since

it is in no way different from the usual proofs of completeness of funda-

mental functions system for the problem of Schturm-Liuville. For equation

( 2.2 ) the plotting is of Green's function, i.e. the inverse integral oper-

ator. The Green's function is cortinuous, since it is plotted from conti-

nuous resolutions. For integral operator the usual theorems of the

completeness of fundamental functions hold true.

I
With f values, at which there are breaks of characteristic curves,

i.e. at s/f = n(n + 1), the attention for completeness should be paid
also to y 0, corresponding to which is the fundamental functions

= Pn
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The only difference from the usually encountered equations is the fact,

that among the eigenvalues there could be an infinite amount of positive,

as well as negative.

It was proved above, that negative values could exist only

for oscillations with period of less than half a day, i.e. at f > 1.

In the next chapter it will be shown, that at ifj = 1 there is virtually

an immediate appearance of all the negative eigenvalues, i.e. all the

characteristic curves, lying in the negative half-plane in Fig. 2.1 ,

proceed from one point f = 1 on axis f-1. At first sight the

situation appears extremely strange. Assuming, jfi  decreases from

values higher than unit, to values lower than unit. Initially the

eigenvalues were only positive, and the corresponding fundamental functions

formed a complete system. With continuous variation of parameter Ift

these fundamental functions continuously vary and at a certain moment

it suddenly becomes necessary to add at once an infinite lot of new

functions in order to obtain a complete system of functions, i.e. the

old system very abruptly ceases to be complete.

The explanation of this event will be obtained by analyzing the

nature of fundamental functions at If1 values, approximating unit. We

demonstrate, that at jfl , a little less than unit, there is formation

next to ends of segment 1, 1] of narrow zones, in which Iough's

functions ( at) > 0 ) lose the oscillation nature, i.e. become of

constant sign. With decreasing Ifl these zones widen out. At very

low jfj values the functions may oscillate in a very narrow zone around

the equator. An appearance of the norrowest non-oscillation zone is

enough for the system of functions to cease being complete; in fact it
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is quite apparent, that this system of functions cannot be used 
for

expansion, for instance, of functions, which differ from zero only in

the indicated non-oscillation zone. On the contrary, Hough's functions,

corresponding to Z 0, oscillate only in zones close to poles, i.e.

precisely these are the best suited for expansion of functions, distinct

from zero in these zones. Thus, there are virtually two additional

systems of functions.

Let's check these assertions. Assuming there is some extreme

point of function.* . Then at this point, as follows from the Laplace

equation ( 2.2 ), will be

S2 f2 + 2 (f2  2

f -y 1-M2

If ,  < 0, the term in square brackets is positive at the

segment L - f, f . Therefore, 1 has the same sign, as . At the

extremum point the curve is directed with convexity to the axis of

abscissae. Therefore there could only be one extremum point ( at the

origin of coordinates ) and only one intersection with the axis ( at

the same nlace ). Thus, at y < 0 segment L- f, fj is the segment

of non-ostillation of resolution.

Assuming now, that Y > 0. Let's analyse, inversely, additional

segment: 1- 1, - f] and If, 1I . The two last terms in the square

brackets of the above relation are here positive. True, the first term

is negative. But if a narrower segment is taken, then with sufficiently

high ' , i.e. for all Hough's functions, starting from any, the last
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term will be higher in absolute value and the whole formula will be

positive. If it is taken into account, that the resolution should

convert into zero at l = + 1, it is possible to come to conclusion,

that there will be no extremums, and therefore, no zeros. In the next

chapter will be given a more precise evaluation of the boundaries of

non-oscillation zone.

How to expand an arbitrary function from Hough's functions? If

tables are made up of these functions, their expansion would be no more

difficult than from Legendre functions. But an approach could be made

to similar expansion also from expansion by Legendre functions, using

expansion of Hough's function from the set Legendre functions. In other

words, there is a transition matrix from one orthogonal system to another.

Since such a matrix is orthogonal, the inverse matrix will be trans-

posed, i.e. obtained by replacement of lines by columns. For example

we are giving Table 2.1 of expansion factors of Hough's functions from

the set Legendre functions, calculated for a random case s = 3, f = 0,781.

The Table gives _ -1 values, corresponding to Hough functions f = 0.781

and expansion factors of Hough's functions from the set Legendre functions

or vice cersa - Legendre functions from Hough's functions. The matrix

is orthogonal.

Expansion accordngto.Hough','functions for positive and negative

has been used by Lindzen (1966,1967), Kato (1966) and Zhantuarov

(1967) in the theory of thermal diurnal tides in the atmosphere.



T A BLE : 2.1

Expansion of Hough's functions from the set Legendre

functions for the case of s = 3, f = 0.781.

-1 -
S3 5 7 9 11 13 15

0.0288 0.9356 -0.3462 0.0693 -0.0083 0.0006 0.000ooo1 0.0000

0.0083 -0.2539 -0.5364 0.7024 -0.3742 0.1173 -0.0251 o.0041
5

0.0037 0.1272 0.3391 -0.0907 -0.5123 0.6435 -0.3960 0.1583

4 -0.0037 0.1363 0.4864 0.6467 0.4992 0.2589 0.0975 0.0279

0.0021 0.0795 0.2278 0.0221 -0.3613 0.0510 0.4700 -0.6070

36 -0.0014 -0.0725 -0.2388 -0.2028 0.1251 0.4748 0.5859 0.4665

1S3 0.0013 -0.0553 -0.1635 -0.0430 0.2450 0.0928 -0.3583 0.0501
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SUPPLEMENT TO CHAPTER 2.

Equivalence of various forms of Laplace equation

of the theory of tides.

We demonstrate the previously formulated suggestion, that the

system (2.8), which is the issue of system (2.3), has no extraneous

eigenvalues of parameter s/f, except a whole number ones, at any y

For convenience we introduce the following denotations

D+ (1-2 ) + ,

2 d sD -= (1 - 2 )  d -

The left portions of equations (2.3), in which all terms are

transferrea to the left, are denoted by A and B:

A= [(1-2) - - (f 2  e2)

B= i( P2 d s 2 2

In the same way also for equations ( 2.8 ) we take:

A + 2) -(12f2



2) 
d

It is not difficult by direct estimate to be convinced, that

2 2
D A = B( 1 - ) + ( i - ) B,

2 2(226)
DB = A( - ) - A. (2.26)

These identities permit to clarify the question regarding

equivalence of systems ( 2.3 ) and ( 2.8 ), i.e. of systems

:: and
It is obvious, that from A= B O it follows, that A-B-O,

i.e. that the system ( 2.8 ) is the issue of system ( 2.3 ). Assuming

now, inversely, A=B -0. If in this case B' O, then also A=-O,

i.e. the system ( 2.3 ) is met and the resolution is not extraneous.

Assuming B O. Then from ( 2.26 ) we have :

2

D B = -- A.
f2

Excluding A from here, we'll have

2
D+D 2= -2 -  B,-- f2



or otherwise
2 2

( 1 - 2 +d s s - B = O,

i.e. B satisfies Legendre equation. This may be in the case, if

2
-- - = n (n + 1), n s,
f2 f

i.e. s/f = n + 1 or s/f = - n. In this case B = Ps and
2n

A = D - P = C P5
2 n 1 n+l,

or A = C2 P .
2 n-1

Thus, if ( 2.8 ) has resolutions, not meeting ( 2.3 ), this could only

be at

s + n ( n >s n -s

Other extraneous resolutions there cannot be. Actually for us

only this is important, but for completeness the question should also

have been clarified, as to whether the values -= n are actually

eigenvalues, i.e. whether the system ( 2.8 ) always has a resolution

-l
at the whole s/f and any -1. We wont try to prove it very precisely,

and will restrict ourselves to the following, on the whole, quite con-

vincing reasoning. Assuming, for instance, s/f = n + 1. Then we have to

confirm the existence of the system's resolution



A2 )d 2 2) =1

B ( 1 - -c - - -- np
2)dax f f2

The corresponding homogeneous system A=B O, as was assumed,

does not have non-trivial resolutions, therefore, according to the usual

alternative, they should be in the non-uniform system. These are the

extraneous resolutions. The only weak point in this reasoning is that

the correctness has not been proved of this alternative in the given

situation.

From the system of equations ( 2.8 ) it is possible to obtain

one more form of Laplace equations. We substitute in the right portions

of this system the terms

- (1 2 ) d- and

using equations ( 2.3 ). We get system

(L+- ) + (f2 2 -2 0,

(L -- )  + y (f2 2) +2 = 0. (2.27)f C J +r$ 0



This system cannot be totally equivalent to system (2.3) due

to the following. If f at a given y is eigenvalue of the system

( 2.27 ), then -f is also eigen value. (Actually, by denoting

1 =-., = 4 , we will find, that l'J satisfy system

(2.27) at fl = ). At the same time system (2.3) does not possess

this property. System (2.27) was obtained as an issue of system (2.3),

therefore, any eigenvalue of system (2.3) is an eigenvalue of system

(2.27), but not vice versa. We will demonstrate, that if f is an

eigen value of system (2.27), then either f, or -f is an eigenvalue of

system (2.3). We denote the left portions of equations (2.27) respect-

ively through A and B. Then, as it is not difficult to check,

2 2 2D+A = B ( 1 )+( - f) B,

12 2 s s2  2

D_B = ( - ) f- ( 1- ) A. (2.28)

Assuming now that , 4' at a given f satisfy system (2.27),

i.e. A B O. Then either A-B--O, i.e. the system (2.3) is also

satisfied, and f is the eigenr value of this system, or A and B

are the non-trivial resolutions of system (2.28), which in this case

converts into a system

(1 - 2 -d +f A = (f2 2) B,

d f2 A,

It should be mentioned, that resolutions, corresponding to f and -f,
have different evennes; if for one of them'. even, and $ odd, then for

the other it is vice-versa.
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which coincides with (2.3), in which 1 and 4 are substituted by A

and B, and f by -f, i.e. the system (2.3) in this case has eigen

value -f.

Finally, let's turn to system (2.9), used in Yaglom's work (1953).

lie demonstrate that it is an issue of system (2.3), where %T, J and

t are determined as described in para 3, by formulas (2.9c), (2.10)

and (2.11). The left portion of equation (2.9c) we convert, using for:mulas

(2.9c),(2.10) and (2.11)

ifL r+ islr+V L4-+ ( 1- 2 ) d

Sif ( LPr+ +- Lc ) = if( L+ - ) 1r )=

i2

s Lf

If we use relation

L(1-2 d = ( 1- ) L -2 L,

then the preceditng, foriqula will get converted into

S L2  (1 df (L + f

if L (1 2) - 2 l+ s L - =

s d I.A- -f
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if2 (L + s Y ( + 2)U -(1 )
s f

But this formula is equal to zero by force of equation (2.8),

which is an issue of equation (2.3). Therefore, equation (2.9a) has been

satisfied.

In order to obtain the second equation (2.9), we apply to both

portions of (2.11) operator ( 1 - 2 ) d
s dd

d2--(1- ) + ( 2 d P2

or

( - ) = ( ) d ( , 2) L + 1 2 .

or

(1 -2) = - (1 - - 2)7-+ is 4

From (2.3)

s2 2) - (1 -2

ff2d °

(2.29)

Therefore,

(p 2 d_ ) d dp

-P + is = - + is .

Substituting this term into the left portion of (2.9b), with

the use of proved formula L~4r + - 3T = 0. We get
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f2rit+ is +5+p - i + L+ +

= f 'T + 2 - - + L t

Using once more (2.29)

f2 + L 4 + 2 -(1i 2) td s s 2

2L + + ( - 1 - ( -2)p +

f 2 f

+ ( I- 2 )

The last formula' is equal to zero due to the second of equations

(2.8). Thus, the equation (2.9b) also happens to be fulfilled.
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Chapter - 3

CHARACTERISTIC OYSMPTOTIC CURVES OF LAPLACE'S EQUATION OF

THE THEORY OF TIDES FOR LOW DYNAMICALLY EQUIVALENT DEPTHS.

1. WORKING SYSTEII OF EQUATIONS :

At the end of the previous chapter a problem was set to
curves

investigate the behavior of the characteristic asymptotic/of lale's

equation of the theory of tides at y-1--*- ( or h--O). So far we

-1
only know that at Y -0Oalong the curve f-~co. In this chapter

formulas will be given for the first trms of asmptotes. This

investigation is made in a separate chapter, since according to the

applied mathematical device it is highly distinct from the device of

the preceding chapter. The contents of this chapter are briefly

published in the author's articles (1966, 1968), supplement to result

H in Golitsin and Dikii article (1966).

Similar results were obtained by Longuet-Higgin (1968).

In the preceding chapter it was shown that the issue of system

(2.3), which is properly called the tidal laplace's equation is a

system of the fourth order (2.8). In deduction of asymptotes this

system, or more exactly, the first equation of the system, will play

the main role. We recall this equation.

L+T s +2) -(1 2) (3.1)ff~ 2 ds1
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Where

L d ( /- 2) d s 2
dt d 1- 2

The first simplification, which could be made in connection

with the fact that the search is for asmptotes at -+oo and f-- O,

is to disregard two in comparison with increasing term s/f. The

equation then will be

(L + -s -) =sc (1- 2 d (3.2)

Let us remember now the first of equations (2.3)

1- dP 2 (3.3)

From (3.2) and (3.3) it follows

(L + ---- ) = - (f2 2

If we denote

E = f2 + s(3.4fEf

We will get

d ( I- 2 d +E)$ . ( 5
- £2) j... _ _ _2 2 E)=0. (3.5)

This is the equation that will now be the main one. We have to study

variation of eigen values E at unlimited increase of parameter .

This is a problem on asymptotic behavior of eigen values in

differential operator with low parameter ) at the senior derivative.
differential operator with low parameter ) at the senior derivative.
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It is easy to discover the analogy of this problem with the so called

quasiclassical approximation in quantum mechanics, where we are

speaking of investigating Shredingerfs equation.

- h4," + U (x) ti= E ,

where Ux) is potential energy, E, total energy number, which has

to determined, when Planck's constant h is taken as a low parameter.

In our problem the potential energy is P2. The difference between

Shredinger's equation and the equation (3-5) is that instead of the

d
2

simple operator 2 we have operator L, which is included in
dx

Legendere's equation. This results in a certain additional

complication, occurring in the presence of special points at the ends

of segment (-1,1). Further on it will be seen, that the indicated

difficulty could be overcome by means of a simple method. Using

similarity of this problem to the problem of quasiclassical

approximation, it is possible to apply the method called VKB-method,

developed in that case. We shall mainly follow this method in the

form suggested by Tsvaan see Heding's book (1965) or the M.A. Evgrafov

and M.V. Fedoryuk article (1966)).

We shall analyse only the non-zonal case, s O, considering

that the zonal one was investigated by L.N. Sretenskii (1947).

First of all we make conversion of equation (3.4). We denote

I 2 d
S- (1 - L ) d . Then instead of the one equation it is

possible to write a system:
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- 2 1'

+2 = 2 E)

We make another substitution of the sought for functions

1 - + z2 , = - ( 1 - z2)+cP(z 1 + Z2)'

where

p 2

It is easy to check, that for values, z1, z2 we will have a

system

S2 z1 2 (1 - 2) + -- .(Z+2 '

(3.6)

Here 6 ( ) - a certain known function, which shall not wirte

down, but will just mention, that it is regular everywhere, except

valuesu-+± 1 and x= +'E at which p converts into zero. In

this case at the last points the feature has the order of p

Let us explain the meaning of the implemented replacement of

variables. With accuracy up to residual term of about 0 (,f ) the

system (3.6) divides into two individual equations
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1 2 2 + Zl

2 1- 2 2- ( ) + p 2 . (3.7)
21 - 2 2 (1-0h 2

Each of these integrates, without difficulty, and the solutions

obtained should approximate the solutions of the complete system (3.6).

2. THE APPROXIMATING RESOLUTIONS.

If we denote

p 2 1- 'K

(eo - arbitrary point), then (3.7) has a fundamental system of

solutions:

(1) (1) 0; (2) (2) ) x
Z1 1 z2 O; "1 0, z2 X2*

The attention is drawn to the circumstance that the approximating

system (3.7), in distinction to complete system (3.6), has, besides

the points ~XA= ± 1, also special points L = ±V E . Correspondingly,

for resolution (3.8) also these points are special (branching points).

Thus, the regular function is approximated by ambiguous (Stokes') law.

Obviously such approximation cannot take place uniformly throughout

the whole range of variable A. In order to find eigen values we

must integrate the equation from -1 to 1. In jhe process of integration

we must encounter points, in the vicinity of which the approximating
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resolution is useless. Here there are two ways for overcoming this

difficulty.

The first occurs in special vicinity investigation of points

fr= +/ /E with the object of finding approximation, applicable in

these surroundings. The second way consists of the following: If

the aim is not to obtain asymptotes of fundamental functions, but

only of eigen values, then during the integration it is possible to

come out on to a complex plane along the variable Aand to by-pass

the special points tA= -E . This is the Tsvaan's method, which

we shall use.

Let us investigate the behavior of functions (3.8) in the

complex plane. The selection of point frk is not essential, since

with the variation of this point the resolution is multiplied by a

constant. It is convenient to take as Ao' one of the two points

A= ± C . These points, from the analogy with quantum mechanics,

we shall call the turning points. We exclude from analysis certain

fixed surroundings of the ends of segment and origin of coordinates

and, therefore, also the turning points, which strive toward zero at

y--~o, f--~O. In Fig. 3.1 the thick lines show curves in plane

at which the function + = 2 d is purely imaginary.

Let us take function )+ in the region I+II. So that the

function in this region would be unambiguous, we draw a section around

the branching point / = 1 as shown in the figure. For the separation

of the branch we shall agree to select the radical sign( IA-E)(1- 2

on the seg:ient F--, 1] as positive. Then, as it is easy to see,

function +LA7) implements conformable reflection of region I+II on
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the region, shown in figure 3.2a. In this figure letters, confined

within brackets denote points and lines, which are the images of

points and lines denoted by the same letters in figure 3.1. Apparently,

outline acd was reflected into twice passed imaginary negative

semi-axis (line b reflects into positive semi-axis).

I e w e al function,7

1,

Fig. 3.1 0 Plane of complex variable and of

Stocks' line.

M2 E
In the same way we analyse function = 2 d~V.

The radical si- ) on segment -1-, - vj we take

as negative. This function reflects region II+III with section around

S= -1 on to region, shown in figure 3.2b.

For us the important point now is one property of regions

in figure 3.2. Any two poiints of such a region could be jointed by

a curve, along which the real part of Rezrpresets a monotonous

function. This property is quite obvious. In figure 3.2a one of
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such curves is shown by a dotted line. Passing on to prototypes,

it may be said, that any two points of region I+II or II+III could be

joined by a curve, along which Re - is monotonous.

We demonstrate an important lemma: if along a certain curve

Re 17 is monotonous and the curve is at finite distance from special

points, there are solutions of a complete system of equation (3.6),

which on this curve are shown as

= x 1 + ( 1 ) z2 = X10 ( (3-9)

and also resolutions shown as

z1 ), a = X2  1 + 0 ( 1 ) . (3.10)

4-7-
assuming, that P1 is one of the ends of a curve, which is mentioned

in the lemma's conditions. Taking system (3.6) as non-uniform and

taking the residual terms, containing 8, as the known right portions,

it will be possible to solve by the variation method of randoi

constants, since we know solutions of the corresponding uniform equatios

In this case we will have

z( ) = x( ) + - x1( ) Zc(c() z( ) + z2) x 1 ) d

z2(~LL) 4 x 2 () z1 1) + z2 ? 1

(3.11)

Here the random constants are chosen so that at ^= IV1 solution

coincides with that of the uniform system zl = X 1, z2 = 0. The

integration here is carried out along a curve having properties shown
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in condition of lemma. As "1 we take the end of the curve at which

Re ' has the lowest value. The (3.11) could be taken as a system of

integral equations, which has replaced the system of differential

equations.

(AE

a) (c

(C)

--d\

( l) (e) ( ) (-1)
(b)

(-v) )

Fig. 3.2 - Conformable reflection of plane, given
by functions ,j (?)La3 and 71 - ((u)(b7.

We shall resolve this system by expanding functions into series

according to orders of 1/ , i.e. assuming that

I N
(al I N

by fnctons + (),ra an

We hal reolv ths sste byexpndig fnctonsint seie

acodn teo oreso /ie\suigta
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oo

z1= _ ( n z(n) ,z ' 2,nZ(:n)

n=O n=O

(3.12)

For the factors of a series we get recurrent relations

(0)z O  = Xi,O)1 = 1

(n) (n-1) + (n-1) X-1 d .(n) X (  ) ( () z ( ) + z 2  -( ) d .

2 22

,(n) = X z(n-1) + z(n-1) 21

Now it is easy to obtain evaluation from induction

1zl(n < Kn  X1

Iz2(n) < Kn X

where as constant K it is possible to take product 2 max/ 6J by

length of integration curve. Ineed, at n = 0, this evaluation,

obviously, holds true, If it holds true for n - 1, then

I1zn) l 2 ma X I o-  jdriJ= Ko: n x'J ,
z(n) 2 maxJ X1~ Kn1 i Re K X

K n-I e 2 Rel i ) ) a
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In the last case we had to use the fact that Re -n (/x) < Re)* u)

i.e., the property of monotony indicated in the lemma condition. From

the evaluation obtained it follows, that the series (3.1) absolutely

converge with sufficiently high ) and that there is actually (3.9).

The second half of assertion, pertaining to formula (3.10) is proved

similarly, but the integration here should be done from the end of

the curve, where Re V has the highest value.

Inasmuch as each solution of the system is a linear combination

of two linearly independent solutions, for instance, of those the

existence of which is asserted by the proved lemma, any solution of

system (3.6) could be written as

Z = F1X 1 ++ 0 ( 1 + C2 2 0 ( 1 )

1111
z=0 X0 + C 0 (
2 2 2 [1 + 1f

Returning to initial variables, it is possible to come to the

conclusion, that any solution of 4 could be written on our curve as

= I( )X1 1 + 0 ( ) + C ) X 1 + 0 ( 2

-.l- c1(e)x (,/) + c2 x2 (7,, ) (3.13)
-

N.B. It is easy to see, that concepts (3.9) and (3.10) hold

true not only on some fixed curve, but throughout the region, each

two points of which could be joined by a curve having the above

property of monotony, atleast, if we restrict ourselves to some
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terminal portion of this region and exclude the surroundings of

special points.

3. CONJUGATION OF ASYMPTOTIC FORMULAS IN A COMPLEX PLANE :

Assuming now that I--is the proper solution of our problem, i.e.,

solution of equation (3.5), satisfying limiting conditions at /= + 1,

the ends of segment are single valued equation, therefore, ( ) is

analytical function of a complex variable 44. In accordance with the

facts proved, in region I + II, except the above indicated

surroundings, % admits approximation.

1 2 2 E) 1/[ +

+ C 2 () e-T - ()] (3.14)

What can be said regarding factors C1 and C2  These should be

determined by boundary conditions 4= 0 at P= 1. But, unfortunately,

the asymptotes do not pertain to surroundings of point /a= 1. However,

this difficulty could be overcome without the search for asymptoes,

suitable for surroundings of point g= 1, First of all for the

solution which we are speaking about, throughout the segment CI/E,

there should be 0'/ < O. This follows from equation (3-5) for

function ,, if it is re-written as

2
= 2 E).
1-
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If at a certain point of segment land 4 had similar signs, for

instance positive, then, since (1) = 0, a point would have been

found on segment E, 17 of maximum, at which ' = 01, = 0. But

in the equation just wiritten we obtain at this point " 0, which

cannot be at maximum point.

On segment -E,1,7 the first of exponent in formula (3.14)

increases with the increase of y, whereas the second decreases. In

order to fulfill the condition '/1 0 at any Y, the increasing

exponent should be suppressed at the cost of the factor, i.e., the

factor with increasing component should be infinitely low in comparison

with the factor with attenuating exponent, i.e., C1 ( )/C2(y)--O,

in which case the striving to zero is exponential. At segment t-i, 17

the main term should be real. Therefore, C2 is a real number with

accuracy atleast to the term, which strives toward zero in comparison

with C2.

In exactly the same way it is possible to write approximation

formula in the region III + II (see figure 3.1).

(1 2) 2 - E) 1( ) e () + d2( )e-( )

(3.15)

Once again the exponent increasing on segment C-1, -- E / should be

suppressed, i.e., dl(/)/d2( )-iO. And here also d2 should be real.

Agymptotic formulas (3.14) and (3.15) have common region of

application sector II. Here there should be coincidence of atleast

the main terms of these asymptotic expansions. Which are the main
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terms? Those which were getting attenuated in sectors I and III,

increase in sector II with thd increase. Moreover their factors

C2 and d2, as we saw, are greater than the factors 
of other terms.

Therefore, it is precisely these terms that have to be equated one to

the other:

C 2 2E

(1 -, 2 ) (2 - E) 2

1 d2e
2 

2
(1 - 2) (p - E)

Moreover, it should be taken into account that multipliers

1/ (1 - ) (p2 - E), which stand to the left and right, are equal

to each other in absolute value, but are distinct in phase, i.e.,

different branches of radicals have to be taken. In the left portion

of the equation we take the branch which is real and positive at -%E

. <~1, and in the right that which is real and positive at -1 el< -

. We obtain

- i 77/ 2 C 2 2 d
e 2- = e -/"1 -d2

The radical under the sign of integral in the exponent is purely

imaginary. We have
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C2
2

-2 = e

Taking from here the imaginary part and considering the reality

of factors C2 and d2, we get

sin E 2 d= 0,M2 .YT ...
_32

/T dE E ( +/dp ) (3.16)

where p is a certain whole number. This is the sought for relation

between y and E. It is completely analogical to Bohr's quantization

rule for Shredinger's equation of quantum mechanics in quasiclassical

approximation, for low values of Planck's constant h.

From the given demonstration it is easily discernible, that

argument variation of function , with by-pass along the outline in

the top semi-plane from some point on segment n t 1, to some

point on segment -1, -E1] is equal to (E _ 7)/(1 ) -

i.e., according to formula (3.16), to 2 p. Therefore, with complete

by-pass in the upper and lower half-plane the argument variation is

equivalent to 2Wtp. In other words number p is interpreted as a

number of zeros of function inside the outline, which by-pass segment

f-,VEfjr . Most probaly all these zeros lie on this segment. But

even without knowing it, we may hence draw dome conclusions from the
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proven fact regarding conjugation of asymptotes at high and low -1

It is obvious, with even p function is even, since it has an even

number of zeros, and vice-versa.

4. T1WO BRANCHES OF ASYNPTOTES :

Asymptotes in form (3.16) are not very convenient for use, as

they contain an integral, not calculated in elementary function

(elliptical). However, the formula could be appreciably simplified,

if the fact is noted, that out of Y-- , according to this formula,

it follows, that E- O (for one and the same p, i.e,, for one and the

same mode). In this case the integration interval gets contracted and

in denominator of integrand it is possible to discard 2 as opposed

to unit, which will not affect the main term of the asymptotes. In

this way there is practically always a very high accuracy; it could

have been increased, if desired, by expanding the integral according

orders of E and taking two expansion terms. But now the integral is

calculated, and we have

/", E = 2p + 1 . (3.17)

Now we recall, what is E. We find

V' f 2 + ) = 2p + 1. (3.18)

This equation could be solved as quadrant in relation to"/ <

We will get two radicals, i.e., two branches of solution. Since f--- O,

the terms obtained could be expanded according to orders of f. Thus,

we arrive at the formula
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f2 1/2 + 2p + sf (3.19)f Y 2p + 1 2p + 1

for the first branch of the solution and formula-

1/2 s (3.20)
f 1 2 p + 1

for the second branch. In formula (3.19) we have taken two terms

of expansion according to orders of f, and in formula (3.20) only one.

As shown by the calculation experience, this is found to be quite

sufficient.

We see that according to behavior at low -1 the characteristic

curves also get divided into two groups with curves of first order on

the left (at low _-1 ) and the curves of the second order on the

right. The question remains open, as to whether division into curves

of first and second order on the left at low "-1 corresponds to
-1

similar division on the right at high y-. In other words, whether

the curve of the first order on the left is the same one on the right

and vice versa. The answer to this question cannot be obtained from a

singleasymptote. It depends to a considerable extent on the behavior

of solutions inthe intermediate zone, between the asymptotes. Let us

take a look on the results of numerical calculations, shown in figure

2.5. We know that the continuous lines here show characteristic curves,

calculated on electronic computer, and the short dotted lines
-1

asymptotes on the right at high -1 . Long dashes show curves, depicted

by equations (3.19) and (3.20). The figures show, that the asymptotic

formulas give a very good approximation. At considerable extention

the asymptotic curves practically merge with the exact curves. In
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this case the activity zone of asymptotes at high ,-1 almost merges

with their activity zone at low f -1. We may say, that asymptotic

formulas alone are sufficient to reconstruct satisfactorily the shape

of curve throughout its extent. Further on we discover, that there

is no reciprocal unambiguous correspondence between the classes of

curves on the right and left. In all the calculated examples at s =

1, 2, 3, there is the same occurrence: the bottom curve of the second

order on the right (at n = s in formula (2.21) ib at the same time

the top one of the first order curves on the left (at p = 0 in formula

(3.19)) . The remaining curves pertain to similar classes both on the

left and right. In para 7 it will be shown, that this is in general

conformity to principle.

It would be of interest also to write down formulas for periods

in all the asymptotic cases in dimensional form. For asymptotes at

high Y,-1 for the curves of the first and second order respectively

we will have-

22 s

-1
For asymptotes at how we have

7T 2a 2 7ra ap +1
T r- , T - (3.22)

2p + 1gh s

for curves of the first and correspondingly second order. These

formulas realize all three possibilities of the plotting of parameter,

having dimension of time, from the values' a, and7/ gh
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- -- 3

Fig.3.3. - Fundamental functions of the Laplace's tidal

equation 1) Y-1=1/10, 2) )-1=1/1200,

fundamental functions of-idal equation, i.e. Hough's function. At

--

high ; , as we know, these functions are asymptotically equal to

adjoined Legendre functions (for asymptotes of the first order) or

linear combination of two such functions (for asymptotes of the second

order). With decrease of ),-1 Hough's functions become dombinations

of a high number of adjoined Legendre functions and their form becomes

-1

of a high number of adjoined Legendre functions and their form becomes
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more complex. Plotted in figure 3.3. are the curves of calculated

Hough's functions of the second order for some s and n. We see, that

at '-1=1/10 the asymptotes are still accurate, whereas at -1=1/1200

the curves acquire a unique nature - the whole oscillation amplitude

is concentrated near the equator, close to A= O, whereas in the zones

of moderate and high latitudes practically turns into zero. Such

behavior of natural oscillations is easily explained. Outside the

turning points the solution exponentially dies-out. The turning points

are deternined by formulaL= +f(--'- or .= + [f 2.+ s/f 1  , which

for asymptotes of the second order could be written also as £U-~' 7s/f:- .

For instance, for s = 1, Y = 1200, f = 1/100 we shall have = + 0.29.

Outside the interval 0.29 0Lt 0.29 the resolution exponentially

dies out.

In para 7 of chapter 2 it was indicated, that at f 1 there is

appearance, at the ends of segment /-i, 1), of zones where the solution

of (exact) cannot oscillate. Using the asymptotes obtained we can

implement a more exact evaluation of the width of these zones. For

instance, it is easy to check that for asymptotes both of the first

and second order (in the last cash only at p >0) the factor in front

of 1 in the right portion of (2.25) is positive at (1 + E )7/ -E- 1,

where -is random positive number. Therefore, in this interval there

are no zeros of function 4 .

The fundamental functions at high r-1 are used in the theory

of diurnal tides, (see Haurwitz, 1965).



5. CORRECTNESS OF CARRIED OUT APPROXIMATION.
ADDITIONAL WAVE, PROPAGATING EASTWARD:

At the start of our discussion we made one, although very

plausible, but not very well-founded, assumption according to which

the role of term 2 aYf in equation (3.1) is insignificant so that

it could be disregarded. As a result we obtained equation (3-5),

to which we applied the VKB-approximation technique. Investigation

should have been made of the validity of this first simplification,

by cbmparing the exact solutions of equation (3.5) and the initial

Laplace system (2.3). Unfortunately, it cannot be done very exactly.

It is only possible to state certain reasons,which could be

considered as eurystic in regard to validity of the first approximation.

We turn our attention to this question now, because the answer is

not quite insignificant. There is one exceptional case; when the

resolution of equation (3-5) does not correspond to any solution

of exact system and, vice-versa, the exact system has a soluton

undepictable by equation (3.5). In the present paragraph we shall

name as approximating solution that of equation (3.5), ald eact- vant

solutioh of syst&m,(.3)A

It should be mentioned that even if it is assumed that

the approximating solution is uniformly similar, jointly with

derivative to exact resolution, it, nevertheless, will not have one

fine structural property of this solution. Namely, at the critical

points of the second order, i.e., at those points on axis where

the term (S2/ 2) 1 -I 2) converts into zero, conversion into

zero should happen also to linear combination (1 -2) + Sp /? ,
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as follows from the second equation of system (2.3). But the

asymptotic solution does not meet this condition. We mention,

that for asymptotes of second order at /- 0, i.e., 2 .2- s 2/(2p + 1)2

critical points of the analysed type do not exist at all. Whereas

for asymptotes of the first order, i.e, f4 -- (2p +1) 2 , these points c

are present near the ends of segment 1- 1, 1 and atT-~>mthey strive

toward the ends. This fineness becomes important if from function

determined from equation (3.5), we wish to find 1i by means of the

second equation (2.3). At the critical point 1V will be found to

be infinite.

To evaluate, to some extent, the effect of discarded term

2 aUyf would be possible with the use of perturbation theory and

considering this term as perturbation. If the first correction is

found to be asymptotically low, we have some grounds to assume our

approximation as justified. Keeping in view the above indicated

difficulty, bound with the existence of critical points near the

ends of segment - 1, i1 , we shall slightly narrow down this

segment, taking instead - + 6 + 1- , where the will

be fixed. At the ends of the segment we set zero conditions. It

may be assumed that this substitution should not be felt appreciably,

at least the main term should be obtained correct, since our

solutions quickly die-out at the ends of the segment, and the

higher is, the quicker is the vanishing. We must demonstrate now,

that if at -) oo0 there is a set.of resolutions of approximating

equation (3.5), for which f 2 j- s2/ (2p+1)2, p > 0 or

f 4 b-- (2p+1)2 , p > 0, there is also the corresponding set of
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resolutions of the exact system; moreover, f (N) being asymptotically

similar to this set for exact resolution, and vice-versa, each

resolutions set for exact system in these conditions corresponds to

the set of near resolutions of approximating equation.

If in equation (3.1) no terms are disregarded, then with

the same conversions, as in para 1, instead of (3.5) we shall have

L +f (E - 2j =2f .

The right portion we estimate as perturbance, assuming,

that the unperturbed resolution, which we shall mark by index zero,

meets the previous equation, where there was no additional-term

L 0o + (Eo 2) = 0.

Expanding according to the orders of low parameter, which

could provisionally be set in front of perturbing term, we shall have

for the first order terms

1 +~ (E. p22 + TEl o = 2 p'~ o

Multiplying the first equation by 41, the second by o'

subtracting and integrating, we shall

1 -

2 o dp

1 +

S 1 -

-1+
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Here o = (1 - 2 o s- 0/ / (s2/f 2 ) - (1 2

The term (s2/f2 ) - (1 2)Y is evaluated from bottom as c y on

our assumptions regarding the bond of f and . Now we must estimate

individually two terms

1 -2

2
-1+E 2- (1 - p2)

2 ) 2

S 2 2 d.

In the first of these has to be substituted by

(~ ) and integrated by parts. Without difficulty we get estimate

0 (y- 3/23) In the second we get initially estimate

2 d

-1 +e

-1+ E

Function( o dies-out as exp. (- -- ). This follows

from asymptotic formula (3 .14) . Therefore, this entire term is

estimated as ( -f- 2 ). Thus, we have E1 = 0 ( r -3/2), whereas

E = 0 ( ). The correction is asymptotically low.
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Thus, we have grounds for assumption, that the asymptotic

solutions, which we have obtained actually correspond to the true

resolutions in every case, except, perhaps, p = 0 for waves of the

second order, where the above reasoning is not applicable.

Now let us pay attention to the fact that we have obtained

our asymptotes, using equation (3.1), i.e., the first of system (2.8)

equations. But the second equation could have been used just as

well and the same carried out, i.e., the two discarded as against

c s/f. The result would have been equation

- ) + -f2 =0

instead of (3.5). The difference is that instead of function

we have 1 , and f is included with an apposite sign. Therefore,

if in relation to this equation the same asymptotic theory is

developed, we will obtain the same formulas for asymptotes of the

first order (at least in the main term, not dependent on sign f),

but only now at even p the even functions will be not / , but 4 .c

For asymptotes of the second order we will get instead of (3.20)

formulas with opposite sign ff --- s--s(2p+l). But all these

asymptotic solutions cannot be near the exact solutions, i.e.

cannot have meaning, except, perhaps, asymptotic solution of second

order at p = 0, i.e.,

f2 S
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because in other cases, as we have defined, the exact resolution

is similar to solutions of equation (3.5), i.e., our old asymptotic

formulas, which contradict new formulas, still hold true. In para 7

we will see, that for branch f f - + S the correct sign is

actually the minus.

We make one more comment regarding the number of zeros of

the exact and approximating solutions 4 . All zeros of approximating

solution 4 lie, as we know, on the narrow segment-19, E J, which

contracts toward zero at y---.o . If the approximating solution is

uniformly close to the exact, then in the vicinity of its zeros should

lie zeros of the exact solution and in the same quantity. But besides

this, in exact solution zeros may appear also within the surroundings

of the ends of the segment [- 1, 1 . It is quite clear that in the

case of f O0 the exact solution has two additional zeros. Whereas,

in the case of f > 0 these zeros cannot be present and, therefore,

the number of zeros in exact and approximating solution is the same.

In fact, at the end of preceding paragraph we remarked, that outside

the interval -2 -{E, 2-- ] function NA (the exact) does not

convert into zero. Assuming, that in interval [2 E 11 the

sign of y will be positive, at i = 2 E the right portion of the

equation (2.3)

is negative, and at , = 1 positive. If it is taken that the exact

solution approximates smoothly at u = 2 , then at this point

function , and its derivative have different signs. These signs
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could only be: <0,4 > 0. Butiifithe immediate vicinity of

1 = 1 function , monotonuously strive toward zero,4 and ,

also have different signs: 4 > 0,4 Z 0. Therefore, function

changes sign at segment 2 1E, 1 . Demonstration of the fact

that there cannot be more than one zero, is easily done by means

of similar reasoning with additional consideration, that between

two zeros of function there has to be either 4r zero (which

is not present here), or a critical point of the second order.

The proof is simple, as we omit it. The proff of the fact, that

at f > 0 there are no zeros on segment 2 fE, 1] is that

at 0 Z f < 1 the extreme, nearest to ends, are the AV zeros,

and not t , which ensues from the reasoning of para 6 in

Chapter 2.

6. NEGATIVE VALUES OF EQUIVALENT DEPTH:

We shall specially pause on one more case, which has

lately attracted the attention of some investigators: the case of

negative values of equivalent depth h or parameter 'i . We know,

that these values could only be at f < 1 and that with increase

of f-1 the curves, one by one, separate and move away to horizontal

asymptotes (in the case of positive f), to which already in positive

half-plane < 0 arrive the curves of second order (see Fig: 2-1, 2-2).

But so far we do not know, whence these curves ensue, from which

points on the axis of ordinates. Perhaps the whole bunch of these

curves emerges from one point f = 1, which at a glance at the drawing

seems quite probable, and, perhaps, each curve emerges from its own

point on the axis of ordinates. In other words, the behavior of these

curves should be investigated at low negative -f -1 values.
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Further on, it will be proved that the characteristic

curves virtually emerge from one point f = 1 at ' -1 = O. This

only requires to prove, that an infinite number of curves emerges

from this point. If in these conditions at least one curve had

emerged from another point on the axis of ordinates, it would

have been interesecting with some of the curves, emerging from point

f = 1, since the curves can accumulate only toward the axis of

ordinates, and there cannot be intersection. Hence we shall

analyse only f values close to unity and plot multiple of curves,

striving toward point f = 1 at -1 -- ,0.

Asymptotes, obtained in the preceding paragraph, and the

methods of obtaining them are inapplicable in the present case, since

there we used not only the lowness of -1, but also the lowness of f,

which is not present here. It will be necessary to obtain a new working

system of equations for the use of VKB-method.

=fP 3  , (_ l + Z 2

(= - 2 ) + ~ .(z + z2), (3.23)

where

It is easy to check that instead of system (2.3) we shall

have in these variables the following system:
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~2~1, - -,2 (2 (1 2) ,2

+ ( + z2 ) (3.24)

where 3 is a certain function universally regular, except at points

m 1 and / = + f. The top signs pert&in to equation for z land

the bottom ones to equation for z2. The role of this system is

the same as of system (3.6), it separates (with accuracy up to

residual term of about ) into two individual equations, each

of which integrates without difficulty. Thus, system (3.24) is

approximated by system

1,2 2 1,2 .2 + 1 ,2'

resolutions of which

Z1 = 2 e d 2

2 22

We shall name the VKB-solutions. In old variables the VKB-solutions

have the following appearance:

P - e 2 dP1' J
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(the residual terms are not written).

It has to be investigated, in which zone of complex plane

the VKB-solutions approximate solutions of a complete system. The

lemma, similar to the one proved above holds true even here: any

resolution could be approximated by linear combination of

VKB-solutions

4 f2 f 2 +

+ ,2()e d (3.25)

in the zone of complex variable , where any two points could be

joined by an outline, along which Re (= - f2 c is

monotonous.

Since we are analysing a case of f, near to unity, it is

possible to encircle both the points f and the unity by a common fixed

surrouncing, into which we shall not enter. Hence we shall examine

separately cases of even and odd solutions, which meet at2  = 0

boundary conditions

0 '= O and = 0 (3-26)
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respectively. Therefore, the analysis will be carried out only of

special points / = f, = 1. In Fig: 3-4 thick lines show curves,

at which Re 1) = 0, i.e., the Stockes' lines. If a cut is made

along an outline, shown in Fig: 3-4 by an arrow, the plane/i will

be reflected throughout plane (Fig: 3-5), cut along a negative

imaginary semiaxis (the sign of radical was selected so that at

realp f the radical is positive, and 7) , therefore, is negative).

From what has been said above it is clear that point /= 0 could be

joined with point /o, where o0 is random fixed point, lying to the

right of point/ = 1, by an outline, along which the Re 1 is

monotonuous. This outline is shown in the figure by a dotted line.

On this outline the A solution is approximated by VKB-solution.

The question arises, how to estimate the boundary condition

at/ = 1. In the vicinity of this point the VKB-solutions are

ineffective. Here we are assisted by the reasoning, that boundary

condition conversions oft into zero at x = 1 signifies also,

that the solution at this point is a product (1 - /2)s/2 by analytical

function, in distinction from other solutions, which have at this

point logarithmic branching. Thus, if analysis is made of the real

part of the solutionS0, lthen with even value of s it will be

real even at /> 1, and with odd value of s purely imaginary at/ > 1.

For the other solutions, not meeting boundary conditions, this is

not so.
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Fig: 3-4 Plane of composite variable/.

Fig: 3-5 - Conformable reflection of ,
given by function r ().

Thus, the boundary condition at/ = 1 is substituted by

the following: with even s the solution should be real at/ I 1, and

with odd s purely imaginary.

We denote for simplicity

f2 2

1-w/
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Let us analyse individually the cases of even and odd

rsolutions of 14r Case 1 even solutions of fV. Due to boundary

condition at zero (3-26) our VKB-approximation (3.25) should have

the following appearance

P,

0

or for

hchJd? + d .

o f

At y =,o it- gives

f 1 ?o

p olP ch P d + j d/ 1 + Vdl.i

o f 1

f o 1

Integrals and are real and integral ' purely

o 1 f,

purely imaginary. The formula just written could be changed,

separating the real and imaginary parts,
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rx d I + d/] COS pj d,,U

Lo 1 f

f 'o 1

ish. d + d sin Ip d
L J

o 1 f

Now we shall use the second boundary condition.

1. Assuming s is even, then o) should be real.

This gives
1

sin p d = 0.

f

or
1

Z f d  = IT k.
f 1-P

2. Assume s is odd. Then* ( ) - purely imaginary

1

COS IpI d 0,
f

or

, 2ff

f -r-d i 2 ff (k+ )
V I~l'
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Case II - Odd resolutions of 1. The asymptotes here

will be

Io

h d /,
0

hence

f 1 /o

o f 1

By separating the real and imaginary parts we have

f 0o 1) - ish P d? + +p d P Cosi Pj dpP

o 1 f

1f ?o

or

2- 2 "
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2. Assuming s is odd, then,

1

f

or

2- 2 du = (k+ -).

f 1 -(p

In case II the same formula was obtained, as in case I.

Thus, with even s

Sr P2 2 d = k. (3.27)J1 - d

With odd s

1
[ . 2 2

S 2 d/ = (k + ) (3-28)
1 -2-

Formulas (3.27) and (3.28) are the analogues of "quantization

law" in our case.

It should be mentioned that the formulas could be highly

simplified, using the fact that at 004. . , it follows that f- 1. Then

/2 = 1 - 1 - 1 1 - ' f< < 1.

1 - ' 12 1 1 f" < 1
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By carrying out this simplification we get an integral,

elementally calculable. We will have:

for even s

-F (1 - f) ' 2k,

for Odd s

- (1 - f) ,'-2k + 1,

or in every case

-i (1 - f) .--'2k ., (3-29)

where p is a whole positive number, having the same parity, as s.

We get somewhat more accurate result, substituting

-+ f- I f

1 +1 + +f + 1 1 + 2 (f + 1) "

then

1 - 2 (1 + f(1 - ) p (3.30)

At -8 0 every reasoning remains in force, if f is

substituted by f
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We make a note of the following interesting circumstance.

At each p, having the same parity as s, there are, as we have seen,

two solutions of 4, even and odd. It does not mean, of course, that

the two solutions, even and odd, correspond to the same values of

parameters f, y , since there cannot be a multiple spectrum. Here

there are simply two very near eigen values, moreover, this fine

structure differs only in some folloving terms of asymptotes,

whereas, in the first torm it is not visible. Fig: 3.6 shows

asymptotic curves calculated from (3-30) for s = 2. Some of the

values calculated on electronic computer for even solutions are

shown by circles and for odd resolutions by crosses. We can actually

see that each branch of asymptotes pertains to characteristic curves

of even and odd type.

What does the number of zeros in fundamental function equal

to? We have obtained asymptotes of eigen values, but not of fundamental

functions, to be more exact, we obtained asymptotes of fundamental

functions in a complex plane, but not on a real axis. Nevertheless,

the number of zeros of the fundamental function on real axis could be

found, by using the principle of the argument. For this we should

follow the number of turns, completed by 7( ) with the movement ofP

along the closed circuit, encompassing segment lf, 1 1 , on which can only

lie all the radicals (except the radical 0 for odd solutions).

With the movement in the top half-plane from = Ato ? = 0, or, better

to say, up to certain low positive value, the change of argument is

equal to "O (f 2 f2 )/(1-, 2 ) d /. as it follows from the
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reasoning carried out. Therefore, for even s this term, according to

(3.27), is equal to 9 k, and for odd s it is I7 (k + -), according to

(3.28). With total by-pass around the segment Cf, 1 this variation

is double: it is 2 k = ,f p at even s and 2 O' k + 7f = 11 p at odd s.

p=2 4 6 8
\ \ 2,0

1,0

-Y q 0,00 1 0,0001

Fig: 3-6. - Asymptotes of characteristic

curves at 0.

Now we add symmetrically disposed zeros on segment - 1,- f

andP = O for the odd solutions, and will also take into account that

zeros at the ends, atx = + 1, add to the variation 6' argument quantity

- each. Hence we determine the following, irrespective of whether

for even or odd s the number of zeros is p - s for even solutions and

p - s + 1 odd resolutions. We denote the number of zeros by N. Let us

remember denotation introduced by us for wave type modes. The

fundamental functions were denoted by l s  ( >), where for modes
n,f

of second order (and they can only be in the region of negative -1)

the index n is negative.
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Comparison of values of parameter p, number n and the

number of zeros N in function XL is given in the following table:

Mode s, f -s-1,f 4-s-2,f ' -s-3,f

Number n . . . . . -s -s-1 -s-2 -s-3

p . ... s s s+2 s+2

Number of zeros N . 1 0 3 2

We see, that for even solutions n = - p - 1, and for odd ones

n = - p. For even N = n - s - 1, and for odd N = n - s + 1.

7. CONJUGATION OF ASYMPTOTES AT HIGH AND LOW:

We pause initially on the case f>O, i.e., on the case

of waves, propagating east to west. We have asymptotes at high

and low -1. In either case all modes are divided into two orders, into

two bunches. The question arises, how does the asymptotes on the left

at low (j1 jons up with asymptotes on the right atc.high I-7  .? in

particulari 'whether -the' curves of the. first'-6nder.'on'the right are the

same as on the left and vice-versa? When we were speaking about the

results of calculations and given corresponding curves (Fig: 2-5) we

pointed out that this was not exactly like that. All these curves

are of the same type, as in Fig: 3-7 (the values on.axes are plotted

in logarithmic scale). In every case the left portion of the curve (

(-s, 8) is the top curve of the first order, and the right-bottom curve

of the second order. In every case also p = 0 for asymptotes of

the second order on the left is not used. Thus, the constant p in

the formula for asymptotes of the second order on the left (3-20) is



- 124 -

bound up with wave type (n, s), n e O in the following way: p = n(- s.

Constant p in asymptotes of the first order (3-19) is bound up with

type (n, s) n O0 in this way: p = n - s + 1, if p > 0, whereas, the

case of p = 0 pertains to mode (-s, s). Basing on results of para 5,

we shall prove that this is in general conformity to law.

In para 6 of chapter 2 it was shown that at f2  s 2

the number of zeros in function 4 along one mode cannot change.

But in this zone lie all the curves, which are controlled on the

left by asymptotes of the second order, f2 . s2/(2p + 1)2, except,

perhaps, their end number. Thus, the curve the left portion of

which is depicted by asymptotes of the second order at sufficiently

high p, has an invariant throughout its extent, number of zeros in

function 4 . In its left portion this number of zeros, as we know, is p,

and in the right portion, where it is depicted by asymptotes of the

second order on the right, s/f - jnI( In + 1), this number is nl -S.

Thus, p = Inj - s. Hence the correspondence is fixed automatically, if

it is taken into account, that to each p > 0 for asymptotes of the

second order on the left and to each p >. 0 for asymptotes of the

first order corresponds, as not quite exactly shown in para 5, one

curve.

It is still not clear, whether any of the curves correspond

to the case p = 0 for asymptotes of the second order. Now it is

easy to see, that there is no such curve. On the one hand, if there

were an existance of such a curve, there would have been two curves

side by side: one of the first order, the other of the second,

pertaining to p = 0. Therefore, for each of these modes 9 would have

been an even function. On the other hand, the parity property of is
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maintained along the whole mode, whereas, th@ asymptotes on the right

show that for adjacent modes similar parity cannot exist, modes

with even g alternate with modes of odd 4. So modes (-s-2, s),
(-s, s) and (s+1, s) correspond to even , and modes (-s-3, s ),

(-s-1, s) and (s,s) to odd. After this the correspondence between

asymptotes on the right and left is unambiguously fixed, as shown

in Fig: 3-7.

It is significant, that although the invariance of zeros

along the mode is not proved, it is already clear, that in asymptotic

zones on the right and left the number of zeros coincides. However,

it is not excluded that in some in-termediate zone this number

varies, and then returns to the previous value.

Let us now take the case f 4j 0. Here, the correspondence

can be fixed on the basis of the follpwing reasoning: On the right

there are only the asympotes of the first order f2 - n (n+1), and

on the left - asympototes of the first order f2  r- 2p + 1 for all

p >_ 0, and perhaps, one exceptional case p = 0 for asymptotes of the

second order, i.e., f' T -V-s. Moreover, in this exceptional case

the asymptotic equation is met not by , but by ' . In other

words, in this case , should be even, and odd. Is there a

curve, corresponding to these asymptotes?

It becomes clear, that this curve does exist, if it is taken

into account, that the top curve (s, s), as follows from asymptotes on

the right, corresponds to odd , therefore, left of the top curve

there cannot be a curve of the first order at p = 0, for which the is

even, and there is only our additional curve of the second order.



- 126 -

2pod 
~,s 

Inl=s+3

2poad(-
n=s+ I P=os+2

Fig: 3-7 - Conjugation of asymptotes at
-1

high and low -1

100 p=0(2pod)

s=1

lpod (1,I1
432

1 3(2,1)

0,0001 0,001 0,01 0,1 1

Fig: 3-8 - Characteristic curves at negative f.
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Fig: 3-8 shows calculation results of characteristic curves

at f 4 0. They confirm everything that has been stated.

It should be mentioned that even in the case of f < 0

the number of zeros of function in asymptotic zones on the right and

left coincides. Here it is more difficult to notice, since p = n - s - 1.

The number of , (P ) zeros on the right is n - s + 1. As we have

remarked in para 5, at f <O 0 the number of zeros on the left is not

p, as in the case of positive f, but p + 2. Hence we get the parity

of the number of zeros on the right and left. As regards preserving

the number of 2 zeros, nothing can be said here, since on the left

investigation was of asympotes , and not of . We have only

reminded that with positive f there is a loss of two zeros, when the f,

increasing, passes through one.
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CHAPTER-4.

VERTICAL STRUCTURE OF OSCILLATIONS.

1. The case of isothermal stratification.

In the two preceding chapters we have investigated equation

(1.32) - one of the two equations into which the problem equation (1.30)

gets split. Now let us take the second equation (1.33) for vertical

component y (x). This equation, in distinction from the Laplace's

equation of the Theory of Tides, as has been mentioned, contains stra-

tification chateristics of the atmosphere, entering through parameter

H(z) = R T (z)/g, but does not depend either on the angular velocity

of the earth's rotation co , or on whether we consider the earth flat

or spherical. Thus, we have equation

y + - (1- 1 + + BH y - O (4.1)

where )= (g - 1 )g + Cg dH/dz is static stability factor. The

term of equation, containing, takes into account gravitational ela-

sticity. Boundary conditions, at which this equation should be solved,

have the following appearance :

y' +( ) y = 0 = 0, (4.2)
h 2

and

y is limited at -----o o

Elucidation is required, as to values of parameters T , h for
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which equation (4.1) has solution satisfying conditions (4.2) and (4.3).

A series of characteristic curves of the equation will appear on the

plane of parameters, y , h., Moreover, sometimes we shall study forced

oscillations from a periodical force active on the surface of the earth.

Boundary condition on infinity will be of the type of radiation condition.

We must remind, that we already know one class of eigenvalues,

or, to say better, one characteristic curve of the equation: for any

function H (z), not decreasing on infinity, there is a characteristic

curve 2 . The fundamental functions in this case will be

y = yo exp ( ) dx

We named it as Peckeris solution in accordance with the name

of the author, who was the first to obtain it for the case of H - const.

But in chapter 1 some doubt was thrown on the physical meaning of this

solution, since it results in w values, very quickly increasing with

altitude.

h =

h=-H

2
* H \4

{H 2H hI

Fig. 4.1. Types of waves for flat non-rotating isothermal

atmosphere.



We begin with obtaining certain specific features in disposition

of characteristic curves (h), by investigating simple and many times

described case of isothermal stratification ( Eliassen, Kleinschmidt,

1957; Monin, Obukhov, 1958; Eckart, 1960 ). Thus, assuming H = const,

= (-l )g. Equation ( 4.1 ) will be

1 T 2H XH X-1
y" + - + (1- h )+  h y=O.

(4.4)

Its factors are now constant., or those C and h values, for

which the term in braces is positive, all resolutions are of oscillation

type and are limited at infinity. Apparently, it is always possible

to compose linear combination of linearly independent resolutions so,

as to meet the single boundary condition on the earth's surface. Thus,

any such pair of 0' and h is eigenvalue and the problem has a conti-

nuous spectrum.

So, the continuous spectrum consists of all the , h points,

located within the zone

1 '2H 'H X- 1 H-+ ( 1 h h h > 0. (4.5)

As before we shall use for illustration the plane 6, h. In Fig. 4.1

the zone ( 4.5 ) is hatchured, Boundary of the zone, hyperbola
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g h X h

has a horizontal asymptote .2 = X g/4H and a vertical asymptote

h = 4 (X- 1)9/ * The intersection point of hyperbola with the axis

-l
of abscissae is h = H, and with axis of ordinates Y-l= X h/( -l)g.

The hyperbola is located in respect of its asymptotes as shown in the

figure, because alwaysC >~ 4(X-1) /X .

Besides,the indicated continuous spectrum there is also a discrete

spectrum. The latter could be obtained in the following way. If C6 and

h are such that the term in braces in equation ( 4.4 ) is negative,

then one of the solutions has the appearance of a vanishing exponent,

and the others - of growing. Boundary condition at infinity is met

only by the vanishing exponent. The resolution, therefore, should be
-mE

of the type e-mx . Boundary condition ( 4.2 ) and equation ( 4.4 ) give

H 1
m - h 2 '

2 1 62H ) H X1 H

m 47 xg )h h

or

H 1 2 1 62H ( CH ) -1 H
h 2 xg h ) h

in which case m > 0, i.e.

H 1
h 2

Equation ( 4.6 ) breaks up into two
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h =XH

and

2 _
"=- h

at h < 2H. The second of these curves as the Peckeris curve. The

first curve corresponds to the so called two-dimensional waves. In

oscillations of this type the vertical velocity is equal to zero not

only on the hard surface, but also identically. Amplitude of these

oscillations y (x) does not change the sign. Fig. 4.1 shows these

two curves of discrete spectrum: for two-dimentional waves this is a

vertical straight h =19 H, and for Peckeris curves - parabola, touching

upon the boundary of continuous spectrum zone at h = 2H.

In spite of the fact that the points of continuous spectrum

fill up the entire zone, it is quite easy to imagine this zone as con-

sisting of continuum of individual characteristic curves. This could

be done in the following way. The resolutions of continuous spectrum

have the form

y = a sin mx + b cos mx,

where

2 1 2H > H - ) H
m = - + -g - -) + - h. (4.7)

4 Xg h > h

Thus, m means vertical wave number. With the fixed vertical

wave number (4.7) m converts into equation of curve, which we shall

name the characteristic curve with preset vertical wave number. Fig.4.1

shows several of these curves for various m values, in the figure



- 13 -

mI <m 2 < m3 . At m = O the curve gets converted into boundary of the

continuous spectrum zone. Each curve consists of two branches. One of

them emerges from point h =X H on the axis of abscissae and has a

horizontal asymptote -1 / H/X g ( m2 + - ) . The other emerges

from pointC-l1 = I/ H/(C - 1 )g on the axis of ordinates and has a

vertical asymptote h = (X - 1) H/ (m2 + ) .

2. Acoustic and gravitational waves.

In order to give physical interpretation to obtained results, we

should remember, that eigen values of the problem are obtained at the

intersection of the characteristic curves of the equation for horizontal

portion of the solution, i.e. the Laplace's tidal equation, with

characteristic curves of equation for the vertical part of the resolu-

tion, i.e. in this case equation ( 4.4 ). Let us take, at first, an

absolutely simple case - model of flat non-rotatory earth. Then, as

we saw, instead of the Laplace's equation of the Theory of Tides there

is an ordinary Laplace's equation on a plene, at which the spectrum is

continuous and to each horizontal wave number k corresponds to a

characteristic curve (2.25), i.e.,

G= /gh k.

In Fig. 4.1 one of these curves is shown by a dotted line. The

same figure shows several curves of continuous specturm in equation

(4.4), and also two curves of discrete spectrum for two-dimensional

waves and Peckeris curve. The numerals mark various intersection points
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of these curves. We start from points 1 and 2, intersection points

of the " horizontal equation " characteristic curves 6=' gh k with

curve (4,7). From the two equations it is possible to exclude h and

to obtain frequency 6 as a function of two wave numbers k and m. For

2
( we obtain

-2 H X-1 K gHk2  2 1 2 2
S + - m + + Hk (4.8)

the same equation as in Monin's and Obukhov's article (1958). This

quadratic in relation toO2 equation has two solutions, corresponding

to points 1 and 2. Point 1 corresponds to acoustical waves, and point

2 - to gravitational waves ( below will be explained the meaning of this

denotation ). Thus, the bunch of curves in Fig. 4.1 emerging from point

h = X H on the axis of abscissae, determines, on intersection with char-

.acteristic curves of horizontal equation, solutions, corresponding to

-l
acoustical waves. The bunch of curves, emerging from point -1 =

= XH/(X -1)g on axis of ordinates, corresponds to gravitational waves.

All gravitational frequencies are lower than frequency O*= ]/( -l)g/ X H,

named Brent-Weisel frequency. For H = 8 km it corresponds to periods

higher than about 330 sec. All acoustical frequencies are higher than

g-/, which corresponds to periods less than 300 sec. Moreover,

the dynamically equivalent depths h for acoustical waves are greater

than X H, i.e., 'about.1.2 km, and for gravitational waves they are

less than 4(X -1)H/ , i.e., 9.1 km. Correspondingly, phase velocities

Shof acoustical waves are over 330 m/sec., and of gravitational waves

less than 298 m/sec.
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Next we turn to point 3. It corresponds, as has been stated,

to two-dimensional waves in the sense, that these have no vertical

velocity and at every altitude of oscillation are in one phase. 
In

contrast, the acoustical and gravitational waves are internal, which,

besides the horizontal wave number k, have also the vertical number m.

Waves, pertaining to point 3, are know as Lamb's waves.

Finally point 4 corresponds to Peckeris resolution. It lies

on parabola C 2= g/h and on the characteristic curve of horizontal

equation = gh k. If h is eliminated from here, there will be the

following bond between frequency and the horizontal wave number:

C2 = gk. (4.9)

It is exactly in this form the term was written for frequency

in Peckeris article (1948). Now we shall explain the meaning of the

names " acoustical " and " gravitational " waves. They can be, for

instance, distinguished by their behavior in two ultimate cases : at

-e--co and K~--- 1. The first ultimate transition can be interpreted

as transition to incompressibility. In fact, we are investigating

-X
polytropic processes, in which the ln p , or

1 - 1
c In pp X In p - In

are preserved.

At7--o hence follows O preservation as constant, i.e.

incompressibility. The second limited transition, atX--- 1, corresponds
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to indifferent equilibrium of atmosphere, when the particle, isothermally

displaced vertically (= 1), has the same temperature, as the surrounding

particles, and does not experience any expelling force from either side.

The static stability factor = (0 - 1l)g converts into zero. And what

happens during these two ultimate transitions with acoustical 
and gravi-

tational frequencies? At XC-o , i.e., with transition to incompressibility,

the " acoustical " bunch of curves, emerging from point h =X H, with-

draws into infinity. With this the intersection point of characteristic

curves of equations for horizontal and vertical components at some fixed

k and m withdraws into infinity, simultaneously approaching the axis

of abscissae. Thus, the phase velocities of these waves strive to

endlessness, and their periods to zero. As regards the frequencies of

the second " gravitational " set, they change only very negligibly. In

particular, there is a slight increase of their limiting velocity, the

Brent-Weisel velocity; it becomes equivalent to g/H instead of

S(%- l)g/.)CH. Thus, for acoustical waves, in contrast to gravitational,

the compressibility is found to be the decisive factor.

On the contrary, at X 1, the acoustical frequencies vary

insignificantly, whereas the entire gravitational bunch of characteristic

curves in Fig. 4.1 rises into infinity, as the Brent-Weisel frequency

(X - L)g/X H converts into zero. Thus, all the gravitational frequen-

cies get converted into zero and the periodical oscillating process

becomes transformed into a stationary whirling motion. The determining

cause of these oscillations could be taken the stable stratification,

or Archimedean buoyancy. With transition to indifferent equilibrium the

cause of these oscillations disappears and they are replaced by station-

arY motions.
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The reasons stated above justify the names given. In chapter 5

these reasons will be confirmed by additional arguments, pertaining to

structure and energy composition of oscillations.

3. Gyroscopic-inertia waves.

Let us turn now to a more composite case of rotating spherical

atmosphere. The corresponding curves of Laplace's tidal equation were

described in preceding- chapters. Fig. 4.2 shows how characteristic

curves of Laplac's tidal equation intersect with characteristic curves

of vertical equation (4.4). For a curve of the first order asymptotically

approaching with h increase the axis of abscissae,the situation changes

very little in comparison with that, which took place in the model of

flat non-rotating earth. The only difference consists in the fact,

that instead of the continuum of the horizontal equation characteristic

curves we have a discrete, though quite dense, set of them and the formula

for characteristic curve C =- ghk is not exact any more, but only

asymptotically true at sufficiently high h values.

65

Fig. 4.2. Types of waves for spherical rotating isothermal

atmosphere.



The high-frequency gravitational and two-dimensional waves, and

also the acoustical waves depend very little on such factors as the shape

of the earth and angular velocity of its rotation, which can only affect

waves of planetary scale.

But in Fig. 4.4. we see intersection points of charateristic

curves of eqution (4.4) with characteristic curves of the second order

of Laplace's tidal equation, which were not present before. These inter-

section points are marked by numerals 5 and 6. The maximum frequencies

for these waves are given by Rossbi-Haurwitz formulas U3= 21Ds/n(n + 1),

since the curves of second order are nowhere below their asymptotes, deter-

minable by this formula. Thus, here we are speaking of extremely low-

frequency oscillations, with the least period equal to a day, but, as a

rule, considerably higher., If the angular velocity of rotation is assumed

to be zero, the horizontal asymptotes of characteristic curves rise to

infinity, i.e. the periods become infinitely long, and instead of waves

we have stationary motions. Thus, the physical cause of these oscillations

is the rotation of the atmosphere, gyroscopic rigidity.

Here distinction should also be made of oscillations, corresponding

to points 5 and 6. The first belong to discrete spectrum of vertical

equation. Their amplitude y(x) vanishes with altitude, and they have no

vertical velocity. Their frequencies are approximatelyr=c2Ws/n(n + 1).

If more exact asymptotes are used of the characteristic curves of

Laplace's tidal equation, for instance, (2.18), and to substitute there

instead of h ( entering through y ) the term h = X H, we shall get
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260s 4a2422 _ (n -s)(n + s)(n + 1)2
Sn(nC H (2n - 1)(2n + 1) 2

g n

(n + 1 - s)(n + 1 + s) n2  (4.10)

(2n + 1)(2n + 3)(n + 1)2

These two-dimensional gyroscopic-inertia waves are knows as

Rossbi waves.

As regards oscillations, corresponding to point 6, they are first

of all internal, since their vertical wave number is distinct from zero.

Their existence is bound up with combination of two effects: gyroscopic

effect caused by the earth's rotation, and the effect of temperature

stratification. The frequencies of these oscillations get converted

into zero with conversion into zero of w , and with transition to indi-

fferent stratification ()C = 1). Therefore, they are the internal gravi-

tational - gyroscopic waves. In order to obtain a formula for frequen-

cies of these oscillations, it is necessary to take a formula for char-

acteristic curves of vertical equation (4.7) and to eliminate from them

h. Since the intersection of characterisitc curves occurs within the

zone of extremely low frequencies, it is possible to assume in (4.7)

'= 0. Then we shall have

2W s (4m 2 + 1) a2 w 2 X
- n(n + 1) (- gH X

X (n -s)(n + s)(n + 1)2  (n + 1 - s)(n + 1 + s)n 2

(2n 1)(2n + 2 (2n + 1)(2n + 3)(n + 1)2 (4.11)
(2n 1)(2n + l)n
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This formula is asymptotic. It gives good results for not

too high m numbers. For oscillations with low horizontal wave numbers

n, s and high vertical wave numbers m this formula is not suitable.

In the last case it is possible to use asymptotes, obtained in chapter

3 for low -l. Formulas (4.10) and (4.11) were given in the Author's

article (1961). In Hough's (1898) and Yaglom's (1953) works formulas

are given for frequencies of two-dimensional waves, where instead of

asymptotes (2.18) use was made of asymptotes (2.21). The internal

waves were not analyzed by Hough and Yaglom.

A few words regarding difference between waves propagating

west to east and east to west. It is known that the difference between

these waves is expressed in the f sign. It has been shown above

that the characteristic curves of Laplace's tidal equation in the case

f < O, i.e., for waves, directed west to east, had no horizontal

asymptotes. In this case there are no gyroscopic waves. In other

words, all gyroscopic waves, both external and internal, always pro-

pagate east to west.

As regards the quick waves ( acoustical, quick gravitational

and Lamb's waves ) their frequencies are such that they are determined

very precisely by asymptotes (2.6) f~ n(n + 1)y , completely

independent of f sign. Asymmetry in direction begins to be felt only

for very slow gravitational waves, where the f sign enters into the

next term of asymptotes. See (2.19) - asymptotes at high Y-1 and

(3.19) - asymptotes at low -.

The next remark we make in relation to negative h values. We
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know that in the left semiplane, at negative h values, lie some char-

acteristic curves of Laplace's tidal equation. Moreover, these curves

are wholly in the zone f 1, i.e., within the zone of periods higher

than half a day. As regards the curves (4.7), they also penetrate into

left semiplane, into the zone of negative h. But this occurs at
-----------

> i1 ()4-l)g/Y)H, i.e., if the periods are less than 5 min. Therefore,

the characteristic curves of Laplace's tidal equation and of equation

for vertical component cannot intersect in the negative semiplane. Thus,

for natural oscillations h is always positive.

And one more remark. As can be seen from the figure, at suffi-

ciently low CT , the characteristic curves are very near to their ver-

tical asymptotes. It means, that in the estimate of these natural osci-

llations in equation (4.1) it is possible to disregard the terms con-

taining a . If we analyze the process of obtaining this equation,

paying attention to whence these terms are obtained, we will discover,

that these terms originate for the left portion of Euler's third equation

(1.23), i.e., with estimate of vertical acceleration. Disregarding

these terms is general in meteorology, which studies the slowest proce-

sses, and it is known as approximations of quasistatics.

In what way will the pattern of natural oscillations change in

quasistatic approximation? All the curves, corresponding to gravita-

tional waves, will be substituted by their vertical asymptotes. The one

which is not substituted will remain straight h =X H, since it is

vertical. The acoustical bunch, as well as Peckeris curve. disappears.
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Hence it is possible to come to the conclusion, that the'quasistatic

approximation does not change the Lamb's and Rossbi waves, so important

in meteorology, insignificantly distorts the slow gravitational .

waves with periods higher than about 15-20 min., highly distorts the

quick gravitational waves and completely destroys the set of acoustical

waves.

4. The case of real stratification.

As mentioned in the introduction, we are taking as temperature

profile the standard atmosphere CIRA 1961 ( see Fig. 1.1 ). Starting

from a certain altitude the temperature rises almost linearly. We shall

assume further rise of temperature as linear. It should be taken into

account in this case, that our equations generally have physical meaning

only upto an altitude of about 150 km, therefore, the style of temperature

profile above this altitude is of no significance. Only those properties

of resolutions have physical meaning, which are not highly dependent on

the behavior of equation factors at high altitude.

Due to temperature rise with altitude ( it begins at an altitude

of 90 - 100 km; the region above this level is known asthermosphere )

all solutions of our equations, except one ( for L and h data ), are

found to be quickly rising with altitude; one solution, on the contrary,

just as quickly decreases exponentially. Thus, the boundary condition,

set at infinity, picks out one out of all the solutions. However, uptil

now, not for every of such solution, i.e., not for every pair of o0 , h,

the condition is also met on the surface of the earth. Those values of
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parameters, for which it is fulfilled, are the eigen values. Therefore,

in the present case the spectrum is always discrete. We will note first,

certain general regularity in disposition of nharacteristic curves on

the G , h plane, then describe the method of their calculations and

the results. Finally, it will be found that these curves are very

similar to curves for isothermal atmosphere.

First of all, a few words should be said regarding negative

h values. Here the position is very different from that in the case

of isothermal atmosphere. With high values of vertical coordinate

equation (4.1) could approximately be written as

i 2 H 2

y" - gh y = O.

At negative h both the linearly independent solutions of this

equation are of oscillating type and limited at infinity. This shows,

that at negative h there is a continuous spectrum, and any pair of ,

h belongs to this spectrum, in contrast to what was for h>O. Formally,

we are obliged to analyse these solutions also. However, they could

hardly have any physical meaning. This is clear from the following :

The characteristic curves of the Laplace's tidal equation fall into the

region of negative h values only at very low frequencies, L--' 2-0 .

But for such C values the term 6 2 H2/gh, which determines the asymptotes

of fundamental functions, begins to prevail over the term H /X gh only

at very high X values, where
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Below this altitude the term in braces in (4.1) is negative,

the solution very quickly rises, since the sign of the second derivative

of the solution coincides with the sign of the solution itself, and at

h< O, according to the boundary condition (4.2), the same sign has also

the first derivative. Thus, the solution rises very quickly at least

up to altitude, where 4L02 > /X H, i.e.,

H > 42

2

If we consider that , has the order 10 m/sec2., then this evalu-

ation gives for H values of about 10000 km, or for temperature hundreds

of thousands of degrees. Only above this altitude the solution begins

to decrease, so that finally the boundary condition at infinity is found

to be fulfilled. Hence it is possible to come to the conclusion that

the solution is really distinct from zero only at very high altitudes,

for which our equation is written purely formally and does not reflect

any physical reality. Thus, these solutions appear due to conventionality

of the mathematical model.

We may also add, that, by adopting approximation of quasistatics,

we would have

S 4 gh

At h 4 0 the term in round brackets is positive, i.e., y" and



y have similar signs. If it is also taken into account that due to boundary

condition 1 )y at = similar signs will have
condition y' = ( 2 h

y' and y, and it will become clear, that in this case the resolution

is a monotonically rising function of altitude and will never die-out.

In the investigation of natural oscillations there is no need

to consider the negative h values. The forced oscillations are a dif-

ferent matter. In their investigation special attention is being paid

lately to the region of negative h.

When the characteristic curves are calculated on electronic

computer it is impossible to solve the equation in endless region. The

solution has to be broken off at a certain level, substituting for the

remaining portion of the region some imaginary boundary conditions. We

have fixed the top limit at an altitude of 200 km, assuming, that the

solution derivative there is equal to zero. Another natural version

of imaginary boundary condition at an altitude of 200 km, is to assume

there, as on a hard surface, vertical velocity equal. to zero, i.e.,

to take condition (4.2) at the top limit, the same as on the bottom.

5. Calculation of characteristic curves.

How to calculate characteristic curves of equation (4.1)? We will

b,e ,. in a way, probing the whole ( 0, ) plane along some test curves

in search for a pair of eigen values , h. As test curves we take the

already familiar curves, depicted by equation

o= F k,
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which are the characteristic curves of horizontal equation in the case

of model of the flat non-rotatory earth, k being horizontal wave number.

We substitute S2 from this equation into equation (4.1)., thereafter

obtaining an equation with one parameter h

+( + k2H2 ) H (gk 2 h + ) y. (4.13)
_ ,, + ( +k2 2 ) Y -g h

Let us take solution of this equation, which meets at infinity

the limiting condition being zero at infinity ( or meeting at altitude

xo, corresponding to z = 200 km, the adopted imaginary boundary condition 
).

We denote this solution by < ( x, h ). We make up function

d(O,h)

M (h) = (4.14)
(h) (0,h)

Integrating equation (4.13) by means of some numerical method

from point x = x to x = 0, we can calculate for each value of h

the value of function M(h) and plot its curve. At the same time it is

possible to plot curve of function

1 H (0) (4.15)
N 2 h (415)

Those h values, at which these curves intersect, are sought

for eigen values. In fact, the solution of equation (4.1) (x , h) then

meets both the condition at level x ( in plotting ), and the condition

on the surface of the earth since
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d~ (QO, ) i H (O) ) ( O,h ).
d 2 h

Function N(h) is monotonously rising. What general reasons

could be given in relation to function M (h)? Let us calculate, for

instance, derivative dM/dh

dM 1 d'(Oh) (Oh)-(Oh)d (O,h
dh 2( O,h ) dhd

( the prime mean derivatives from x ). Functionj ( x,h ) meets the

equation

+ 1+ k2H 2 )C = H (k 2gh + -. (4.16)

Let us differentiate this equation by h

S + + k 2H dC H (k 2gh + ) +
dh dh cg h dh

H 2 (
+ -- ( k - - - ) (4.17)

We multiply equation (4.16) by d /dh and substract from it

equation (4.17), multiplied by T ;, then integrate the difference from

O to x . We get

4f'(O,h) d (O,h) (h) dT (Oh)
dh dh
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= - (kg -h ) dx.
)C g h 2

0

This term we substitute in formula for derivative dM/dh

00

dh 2 ( 0,h () S c 2 (x,h)dx.

on Thus, the sign of derivative depends on the sign of integral

H (k2 2( x,h ) dx. Now we take into account that p (x)
h 2

is limited both from the top and from the bottom

1 2 (4.18)

(approximately it may be assumed, that 9 ;, 1.4 m/sec 2., 2 m 12 m/sec 2.

2
Hence it follows, that at h >~ /k 2 g we have dM/dh > 0, and at

h< /k g - dM/dh < 0 .

The fact, that dM/dh > 0 at sufficiently high h does not

mean monotonous rising of function M (h). There is a calculated multiple

of the break points of function M(h), these h values are the eigen

values of equation (4.13) with a simpler boundary condition at x = 0,

namely, y(O) = O. Between these break points the M(h) rises from -ao

to

In the region of h values, where dM/dh < 0, there is also a

calculated multiple of break points, accumulating towards h = 0, and

between each two break points M(h) decreases from ao to - oo . The
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pical curve of the function in question is shown in Fig. 4.3 for

-1
k = 0.2 km

8 7 6 5 4 2 0 1 2

-1

N-2

2 3 4 5 6 7 8 910 20 30 h KM

Fig. 4.3. Functions M(h) and N(h).

The above reasoning could be made somewhat more precise. Its

short coming was the existence of zone J 1 /  kh < / k2 g,

in which the sign dM/dh remained undetermined. This could be eliminated,

if we take a more complex function

P(h)= M(h) - Nh) (= M(h) - N(h) h

L2 g g(k2h - 1)
h

Apparently, the eigen values of the problem are obtainable as

the zeros of this function. Let us calculate its derivative:

dP(h) ( dM H(0) h (M N) k 22+1
dh dh h2  g(k2h2 ) g(2h2 - 1)

or o

dP(h) 1 ' H 2 - 2 H-(0
d = k~~2 ~(kg - )4 dx- X

h 2(Oh) h2 h2
0
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h 22
X h - (M N) k2h2 + 1

g(k2h 2 - 1) g(k2h2 , 1) 2

Now we shall convert the integral. As will be shown in the next chapter,

this integral. is closely bound up with the concept of energy. The fol-

lowing identity occurs, which could be proved by partial integration:

0 oo

2 h 2
- 2He+g(T' - ) dx+ xg2 2 + (-- - dx =

o o

- (,2 - H - 2dx - xg (a? + '(0-NT(0) +0o

+ H(o) ( 2 ) ( (0).

The left portion of this identity is positive. We denote it

by E. Considering that f (0) = M (0), we get

X 2 2
Sg d (k2h2  1) xg2

k2h2 + 1 H 2

Sh(k2h2 - 1) M - N ) + (0).

Finally, substituting this term into formula for dP/dh, we shall

have
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dP (h) = Eh > 0.

dh (k2h2  1)2 xg ( ,h )

In this way there is no zone of undetermined sign. The zeros

of P(h) function ( i.e., the eigen values of our problem ) alternate

with break points ( i.e., eigen values at zero condition on earth's

surface ), if we do not count the additional eigen value C2= g/h. In

other words, Fig.4.3 shows relative position of M(h) and N(h) curves

in the general case. There is only one branch of M(h) curve, both

ends of which withdraw into infinity of one sign, the branch, on which

2 2 2
lies the point 2= g/h ( ork h -1 = O ).

Fig. 4.3 also shows the curve N(h) and the intersection points

of both the curves. This is the sought for eigen value h. The

obtained A and r values are plotted on plane ( h i  l1 ). Then the

k somewhat changes, i.e., the test curve shifts, and the whole pro-

cedure is repeated. As a result there is a combination of all the

characteristic curves on plane ( h, -1 ).

Fig. 4.4 shows the main alculation result of equation (4.1)

characteristic curves for vertical component. The first and the basic

thing that can be said by looking at the figure is that the general

qualitative pattern of characteristic curve position in a plane is

very similar to the pattern, which took place for the isothermal atmos-

phere. The curves are also mainly grouped into two bunches, of which

one corresponds to oscillations with quite high periods, and the other,

in contrast, to quick, short-period oscillations,, It- is. natural- as;.. 1
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previously, to call the first oscillations gravitational, and the second-

acoustical. The resemblance consists also in the existence in the

present case of a curve, very similar to two-dimensional resolution

h = C H for isothermal atmosphere. Of course, now this vertical straight

h -10 km is complex : it consists of individual portions of character-

istic curves, replacing one another in sequence. We shall denote this

straight ( slightly curved at the bottom ) as the main complex mode.

In the next chapter we shall see that even the properties of correspon-

ding solutions are very similar to properties of the isothermal atmos-

phere two-dimensional solutions.

oaeR
to'

101

0 5 10 15 20 25 h uK

Fig. 4.4. Characteristic curves of equation (4.1) in the

case of real stratification.

6. Short-wave asymptotes.

Even in the figure it can be seen, that the bunches still have
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the tendency to gather at points on axes, as it was in the case of

isothermal atmosphere. This can be proved exactly, and these points

found. We shall find, for instance, asymptotes of acoustical waves at

S--- co . If we still search for intersection points of characteristic

curves with " test " curves 0= gh, then (- c, will correspond

to k----co , i.e., to asymptotes of short waves. The h eigen values,

i.e., the intersection points of M(h) and N(h) curves alternate with

M(h) break points, i.e., with eigen values of a simpler marginal problem

at boundary conditions on the earth's surface y(O) = 0. In other

words, the characteristic curves of one marginal problem alternate with

characteristic curves of another. If we prove, that characteristic curves

of a simpler problem gather at one point on the axis of abscissae, the

same will be proved also for the characteristic curves of the main problem.

Substituting in equation (4.1) the variable according to formula

x= h , we get the marginal problem

y" + H y =  - + - )hy, y(O)=O. (4.19)
g xg xg

It is required to investigate the behavior of eigen value h

ats---oo . This is also a problem of quasiclassical type, similar to

the one solved in chapter 3. First of all it should be mentioned, that

in eachof the round brackets in (4.19) may be left only one term, con-

taining C 2, as we are studying the behavior of solutions at high 6 2.

Now we have
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62

- y" + - H( xH - h )y = 0.
xg

This equation is already similar to Schredinger's equation and

the asymptotes are given by Bohr's quantization

H _h) h - xH " )l =(n + 7f)

where is a whole number, the number of eigen value, and 1' 2 '

turning points at which h = X H. Returning to variable x, we shall have

g x H(x) h xH(x dx = (n+ - )C , (4.20)

xl

where xl , x2 are turning points, at which h = X H. At r---o the integral

should be striving to zero, i.e., all the " levels " drop down to the

bottom of " potential pit " H, or

lim h = xH . (4.21)
l n min

Thus, it is proved, that all the characteristic curves of acous-

tical type in the limit case of high frequencies, or short waves, gather

at point h =4 Hmin on the axis of abscissae. Moreover, as in chapter 3,

the conclusion may be drawn here that the solution y is mainly concentrated

in the region, between the turning points xl x < x2, and outside

this region it quickly vanishes. In other words, the high-frequency
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solutions are concentrated in a narrow layer of minimum H values ( i.e.,

minimum temperatures ) around- altitude 84 km ( slightly less high-

frequency waves may concentrate also in the zone of the second minimum

in the vicinity of altitude 17 km )° We shall speak of this later on.

Quite similarly the investigation is made of the limiting case

of short gravitational waves. This requires finding solution asymptotes

of equation (4.1) at h---O. Again, discarding low terms, we will have

- y" + - y = 0
ghxH

y(O) = 0.

Asymptote at h--- 0 of quantization type has now the following

look:

H 2 H 2dx  + 7. (4.22)

x1

Hence it follows, that

lim - =2 max (4.23)

Thus, frequency of the very short gravitational waves is similar

to maximum Brent-Wysel frequency 1 f/7xHTmax and the solution is mainly

concentrated in the narrow zone of the highest relative static stability,

characterized by Brent-Wysel frequency. This zone falls approximately

to altitudes 100-110 km. The layer of high stability is, thus, a sort

of wave guide for high-frequency gravitational waves. (The second wave
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guide, where less high-frequency gravitational waves may concentrate,

corresponds to the second peak of Brent-Wysel frequency at an altitude

of 30 km ). About this too, we shall speak later on.

7. Long waves.

The assumption that temperature rises limitlessly with altitude,

has resulted in discreteness of the spectrum. However, in the same way

as the analysis of equations for higher altitudes, this discreteness is

of formal nature. Actually, solutions of equation (4.1) begin to vanish,

when the value

2 1 2 H ( xH HP (424)
xg h xgh

becomes negative ( at sufficiently high altitudes this takes place due

to terms - 0H2/gh on the strength of our assumption ). However, for

very low frequencies or for high values of equivalent depth h ( i.e.,

for long waves ) this occurs at a very high altitude, the analysis of

which within the framework of our problem has no physical meaning.

Assuming, for instance, that we are interested in the thickness of

atmosphere upto 200 km., let us see, at what values of parameters,eh

the vanishing begins not above altitude of 200 km, i.e., when the value

of parameterr 2 at altitude of 200 km is negative. In Fig. 4.5, below

line 3 lies the region of parameters U, h, for which '&2 (2 0 0 )< 0.

Let us analyse now in more detail, what happens in the region

above line 3 in Fig. 4.5, in the zone of quasicontinuous spectrum. The

energy now cannot be fully retained in the lower 200-kilometer layer,
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as it was for fully discrete spectrum. The energy penetrates to higher

altitude. However, even here there are some thermal barriers, hindering

the drift of energy to high altitudes. These are layers of the least/1 2

values. For long acoustical waves, i.e., at high h values, the last

two terms in formula (4.24) could be disregarded and what we shall

obtain is that the barriers are the layers with the least H values,

i.e., the cold layers. Thus, we see here total inversion of position

which had place for short waves. There the cold layers which were wave-

guides, are here - barriers.

For long gravitational waves, at low 6 , the terms may be dis-

regarded in the equation containing 6 , and we shall get as barrier

layers with minimum values of product P H. Since / varies at consi-

derably higher rate, than H, these layers approximately coincide with

the minimum position of / at an altitude 60-70 km.

How effective are these thermal barriers? They cannot serve any

more as an absolute obstacle for energy penetration into high layers,

but can only retard this process. The discussion of this question could

be conducted in the same way, as in quantum mechanics the study is made of

the so called tunnel effect an event, very similar in form to the one

under discussion. We should place in the lower part of the atmosphere

a source of periodic oscillations, and at the top boundary z = 200 km

to set a certain condition of the type of radiation, which should separate

out of all resolutions those of the type of waves, propagating. upwards,

discarding waves propagating into opposite direction. Such problem for

forced oscillations was analyzed. by Wilkes for equations in quasistatic
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Fig. 4.5. Characteristic curves (1) and the curves of

resonance peaks (2) of the problem on forced

oscillations. 3 - limits of positive /p 2

region.

approximation and with a different temperature stratification. He took

as the compelling forces the tide - generating forces, which are active

mainly on the surface. It would be of interest to us to follow the way

of the real spectrum conversion into spectrum of Wilkes type with incre-

asing wave length.

Let us formulate conditions at the top limit. We assume, that

$ 2(200) > 0. Also, that above 200 km the factor / 2 is constant. Then
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the equation (4.1) has two linearly independent solutions ei i and

e-i z. If it is taken into account that dependence on time in our

p e t i(6t- z)
problem has the form e t, it will be clear, that solution e

i( t- z) a wave propa-
is a wave propagating upward, and the solution e

gating downward. Only the first one of these should be left. It is

defined by the marginal condition

dy= - iy, z = 200 km. (4.25)
dz

In this paragraph we shall also analyse resolutions from the investigated

zone 112(200) < 0, but on condition

dz = - y, z = 200 km. (4.26)

This condition denotes exponential vanishing of solution above 200 km,

if /12 is taken there as constant.

We introduce a fundamental system of equation (4.1) solutions.

We assume

y(1) = 1i, y(2) = 0;

(1)  (2 )

dy , dy - 1 at z = 200 km.
dz dz

Then the solution, which meets condition (4.25) at 2 (200) > O,

will be

(1) 2 (2)y=y -'L w- y

Passing on to coercive force we account for it in the marginal
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condition

1 1
y' (0) - N(h) y (0) =2- , N(h) - () - - (4.27)

wherei-l is the preset amplitude of disturbing force. If the term is

considered for vertical velocity (1.38), the marginal condition (4.27)

can be interpreted as the amplitude setting of vertical velocity on the

earth's surface. In Wilke's work this condition for the case of semi-

diurnal oscillations was obtained with an estimate of tide-generating

potential. Denoting

M (1)(h) = 1 (0) M (2)(h) = ( (0)

y (o) y (0)

Then at > 0

c12 (M(1) N)2 (1) 2+ 2 (M(2)N)2 (2) 2

=( (y (0)) ( -N)2(y (0).)

and at / 2  Z 0

(M(1)-N)y(1) (0)- -) M (2)-N (2)0)

Now it is necessary to choose some measure, which would appraise

the intensity of oscillation's excitation at a given amplitude of per-

turbing force. This measure, following Wilkes, we take the land pressure

amplitude. From (1.19) and the term for vertical velocity (1.38) we find

this amplitude ( with accuracy up to constant factor, which is of no

interest to us )
2

P2 2 -_ ) y + g (M- N)y 2

Hence without difficulty we find pressure amplitude at /O/ = 1:
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a) atI 2 > 0

- - )+ (M(1)-N2 (l)o) +
g h

12

S21 + (2 - - ) +(M (2)_N)2 y(2)(0jy 228

2 (M N)2 (l)(0)] 2 (4.28)

+(M 2 (M (2)-N)2 (2)(0) 2

b) at 2 <0

+(M(2)N) y(2) (4.29)

(M(1)-N)y (1) (0)- L(M(2)-N) y(2)(0) 2

The following estimate was carried out on computer: For series

of wave numbers k, starting from sufficiently high ( short waves ) and

ending with very low, R values were found and plotted on a curve ( more

correctly, on the curves given below was plotted the R/h value/sec

Fig. 4.6 ) . Found on this curve were the resonance peaks. For short

waves these resonance peaks coincide with the previously calculated

eigen values h. With the increasing length of wave the resonance curves

have peaks at frequencies, not necessarily coinciding with earlier

estimated eigen values.
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The general pattern is shown in Fig. 4.5. Here by line 2 are

plotted the curves of resonance peaks, and by line 1 - characteristic

curves at y'(200) = 0. Attention is attracted by the following features

of this pattern. For modes n = 2, n = 3 the resonance peaks universally

coincide exactly with eigen values. It should be mentioned that in

this case the resonance peaks happen to be very energetic and acute.

Curve 2, which initially coincides with mode n = 4, breaks off. Here,

with increasing wave length the resonance is very acute, so that even

insignificant h variation leads outside the limits of resonance peak.

With this the height of peak decreases. After the passing of curve into

region of positiveJ 2 ( boundary of this region is shown by curve 3 )

the resonance peak very quickly becomes indistinguishable.

n=6

n=3 n=.2

n=5

1,5 15 3 3,5 4,0 4,5h M

Fig. 4.6. Sample of resonance curve in the region of

short gravitational waves. k = 0.082 km - 1 .

The two following modes, n = 5 and n = 6, have a very interesting

behavior. The resonance peaks here pass from one mode to the other

adjacent one. The first of these, the one that passes from mode n = 5

to n = 6, is of high intensity and clearly defined, whereas the second

is incompetent.
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Fig. 4.6 - 4.8 show samples of resonance curves. Fig. 4.6

pertains to the region of discrete spectrum, Fig. 4.7 - to transitional

zone, and Fig, 4.8 - to very long waves. This example is taken so that

for mode n = 3 the period is half a day. This example was taken for

comparison with Wilke's results. He studied conventionalized atmosphere,

showing temperature curve by a broken line, given in Fig. 4.9. The

resonance curve obtained by us is shown in Fig. 4.10. It is clear that

the nature of curve is exactly the same, but quantitatively it is highly

distinct from ours, obtained for standard atmosphere. There is a more

important difference also - in position of mode n = 3. This is highly

significant for the resonance theory of tides. The equivalent depth

h = 6.7 km, obtained by us, is too far from that, which could confirm

the resonance theory.

n=1

n=2

n=3
n=5

R/h

n=6 =4,

1,5 4,5 6,5 75 8 ,s 1,5 9, KM

Fig. 4.7. Sample of resonance curve for transitional wave

length. k = 0.063 km-1
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n =2

n=3

Fig. 4.8. sample of resonance curve for long waves.
-:5

k = 0.57.10-3

h KM
120

80

0

150 350 T(

Fig. 4.9. Atmosphere model adopted in Wilke's book.

0,10 O0,1 0,12 0,13 0,14 0,15h-'KM

Fig. 4.10. Resonance curve, corresponding to model, shown

in Fig. 4.9.
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It should be mentioned, that from formula (4.28) one more con-

clusion may be arrived at. The high resonance peak is obtained in the

case, when denominator is very close to zero. The latter means, that

both the resolutions y(1) and y(2) at x = 0 meet highly accurately the

boundary condition. In other words, eigen values of the problem with

two different boundary conditions at the top limit are similar to each

other. In this case the eigen values are very little dependent on the

boundary condition at top limit.

Thus, the presence of cold barriers results in that at certain

h values the atmosphere becomes hardly permeable for energy propagating

upward, and a low in amplitude disturbing force can generate considerable

oscillations. We are dealing only with periodical in time movements

and not with the process of their setting. Apparently, an incompetent

force can swing the atmosphere to a considerable extent only during a

sufficiently long time.

8. Velocities of Rossbi waves. Comparison with empirical data.

The existence of Rossbi waves and formulas for their velocities

were first theoretically shown by Rossbi and Haurwitz. It is extremely

interesting to establish their existence empirically, from observations

at Meteorological stations. The most perfect attempt of this kind was

undertaken by Eliasen and Machenhauer (1965). By subjecting to harmonic

analysis the field of pressure at different time moments, they found the

velocity of phase shifting for individual harmonic components. These
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data were compared with theoretical velocities of Rossbi waves, obtained

for incompressible atmosphere, i.e., at y = 0. We know the following

formula for frequencies of Rossbi waves in this case : , =2w0s/n(n + 1).

Thus, phase velocity ( or more correctly, angular phase velocity )

E=- 2w/n(n + 1).

Eliasen and Machenhauer also took into account the mean angular

velocity of rotation of the atmosphere's in relation to the earth 0

i.e., the zonal transposition. Thus, the total angular velocity of

rotation of the atmosphere's in absolute coordinates will be U0 + Oc

this value should be inserted into formula for velocity instead of c .

Moreover, in order to obtain velocity not in relation to rotating atmos-

phere, but in relation to the system of coordinates bound up with the

earth, addition should be made to velocity of O . We shall have, there-

fore,

2(LO+ d)
= n(n + 1) "

In comparison of empirical results with those obtainable from

formula (4.30), it is discovered that empirical velocities systematically

obtained are lower than the theoretical. Eliasen and Machenhauer assumed,

that the cause here is non-estimation of the compressibility of atmos-

phere's and suggested a method for the approximate estimate of compressi-

bility. They used one empirical constant, with appropriate value of

which satisfactory coincides with experiment.

It turns out, that it is possible to do without this approximate

theory, if the values of natural frequencies are used for Laplace's tidal
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equation. Let us take for estimation h = 10 km, i.e., that which has

place for the main complex mode. Then, with an estimate of O- , taken

by Eliasen and Machenhauer (OC= 0.0225 o ), corresponding value of para-

meter =4a2 ( o + cC )2/gh will be 9.2. Table 4.1 gives velocity values

of Rossbi waves 8 obs' obtained from observations, ;incompr., esti-

mated from formula (4.30), and compr. , determined from Laplace's

tidal equation with an estimate of average zonal transposition. The

table shows good concordance of 5 and E . A more detailed
obs compr.

discussion of this question could be found in Diky and Golitsyn article,

( 1968 ).

TABLE : 4 . 1

Velocities of Rossbi waves ( degree / day ).

obs incompr. compr.

( 2,1 ) - 70 - 115 - 64.0

( 3,2 ) - 40 53 - 40.3

( 4,3 ) - 20 - 28 - 24.7

( 4,1 ) - 20 - 28 - 21.5

( 5,2 ) - 12 - 16 - 13.4

( 6,3 -8 - 9 -8.0
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CHAPTER : 5

ENERGY OF OSCILLATIONS.

1. Energy and classification of waves.

In the preceding chapter we saw, that all the oscillations

could be classified in a certain way, by separating acoustical, gravi-

tational and gygroscopic-inertia waves. The indication, according to

which the classification was carried out, was to some extent formal :

the behavior of these waves was investigated, with limit values of some

parameters characterizing the structure and behavior of the atmosphere:

parameter of static stability, parameter of compressibility and angular

velocity of the earth's rotation.

These limit transitions can be carried out in a simple analytical

model, in the case of isothermal atmosphere. For a model which is more

complex and more approximating reality it would be impossible to change

the parameters in this way, and not to lose the reality of the model.

It is impossible, for instance, to direct the static stability parameter

toward the zero. Thus, here the classification is based on simple

analogy, on the fact, that the pattern of characteristic curves in a more

complex case of real atmosphere is generally close in its nature to

isothermal model.

However, it would have been considerably more interesting to

clarify, whether there are structural and physical differences in waves

of various types. The first objective characteristic of these differences
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could be the energy composition of a wave. We have seen in chapter 1,

that the energy of atmosphere consists of several different parts. Due

to anisotropy of the atmosphere it is expedient to analyse separately

the kinetic energy, related to horizontal and vertical movements. As

regards the potential energy here, too, it would be useful to separate

two parts: energy related to compressibility, i.e., the elastic energy,

and the energy related to stable lamination, i.e., according to termi-

nology of Eckart, thermobaric energy.

It is natural to expect that acoustical and gravitational osci-

llations, i.e., quick waves, are related to periodic transition of

energy from kinetic into potential and vice-versa. The kinetic energy

comprises, on an average, 50% of the total energy ( virial theorem ).

As regards the oscillations, under the effect of gyroscopic forces,

which are not active, the kinetic energy here does not pass into poten-

tial and should be, therefore, absolutely predominant.

Hence, we should expect that acoustical and gravitational waves

are distinct, one from the other, by the composition of potential energy.

In the case of acoustical waves the predominant should be, apparently,

pressure pulsations, i.e., elastic energy, and in the case of gravitational

waves, pulsations of entropy, i.e., thermobaric energy. It should be

mentioned that in spite of the great interest, evinced in regard to

acoustical-gravitational waves, such an important question as the energe-

tics of these waves, has been hardly touched by investigators. It is

only possible to mention the work of Eliasen and Palm (1954), which

dealt specially with energy of waves.
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Let us investigate first the question regarding composition of

energy of the waves theoretically. In para 4 we shall give results cal-

culated on computer. A lot of attention will be paid not only to total

characteristics of the energy, but also to energy distribution in altitude

and in this connection to wave-guiding properties of the atmosphere.

In the space of vector-function a = ( u, v,w, p, o ) it is

possible to introdice a bilinear, positively determined form

<au av1 2  1 2

<a, 2 

+ - + 9 ( - c2  1 ) dV. (5.1)

2xp 2xp2

Energy is a corresponding quadratic form. If there are two

natural oscillations e t al , e t a2 with different frequencies

, the bilinear form ( ei  tal , eita2 2 ) is equivalent for those

to zero, i.e., they are orthogonal in this matrix. In fact, the quadratic

form for the sum of these oscillations (e I  al + e x. a2 , ei tal +

+ ei C~ta 2 ) = ( a, a )+(a2 , a2 )+ 2 cos ( al - C2 )t. ( al, a2 ) should

not depend on time, since this is energy; therefore, (al, a2 ) = 0.

But if two natural oscillations correspond to one and the same

but are different one from the other, they should have different values

of h or In this case our bilinear form for them is still zero

on the strength of the orthogonality of the two solutions of Laplace's
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tidal equation at the same f = (/2 , but different Y Isec formula

(2.5)) . Thus, the energy is a very convenient matrix, in which it is

possible to study the fundamental solutions. In particular, it helps

to expand the arbitrary solutions from fundamental, when the complete-

ness of the latter will be proved in the next chapter. From the demon-

strated orthognality it also follows, that the total energy of natural

oscillations is equal to the sum of their energies, i.e., additive energy.

Now we shall write practically convenient formulas for the energy.

Since all the variables are expressed through divergence, the energy

can also be expressed through the same quantity. We recall formulas

for the energy of four types ( 1.9 - 1.12 ). After y and ~ have been

determined from equations, it is possible to find the values of unknown

quantities, velocity components, pressure and density. It is easy to

obtain these terms from equations in chapter 1. Thus, for pressure we

have p = p*(x)' . Here p*(x) vertical component,

- xg H 02 y + g( y' - )

P*= -

po h

r_- component dependent on horizontal coordinates. We shall analyse two

cases, of spherical and of flat earth. In the first of these =es ( ()

where 4' - solution of Laplace's equation, and in the second even more

simply r = e i (k  x + k x ) Similar terms we have for vertical

velocity
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- xg y' + ( H- (5.2)

S( '2 - )
h

and for entropy

c (5-3)

For horizontal velocity components we get the following terms.

In the case of the spherical earth

- iC'p* exp .( is f )

U = ,

Pp( - ) exp ( is )
v =., (5.4)

2aw 1 - p

where function $ was determined in chapter 2 [sec system (2.3)J . For

the flat earth we have u = - klp/vp , v = - k2 P/-P

First, for simplicity, we shall analyse the case of the flat

earth, which is admissible only in the study of sufficiently short waves.

We find the energy of a vertical air column, section area of which is

one. Substituting the terms just written into formulas for energy (1.9)-

-(1.12), we get the following relations right portions are reduced

2 2 g/h )2 times :

Er h } 2 z 2H Y dz,

V
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02

h 2H YEB = xgH (r2 [ + ( - dz,

1 
2

E = 2y + ( y ) dz

o

ET = g + ( -]--- ) y  dz. (5-5)

The integrands densities of corresponding parts of energy, we denote

by er , eB , e , and eT respectively.

2. Theorem of virial.

We demonstrate that on the assumption of flat non-rotatory earth

kinetic energy ( average during the period ) is equal to potential, i.e.,

Er + EB = Ey + ET . For this the term for energy has to be converted.

First of all we shall deal with kinetic energy. We integrate the first

two formulas (5-5), by parts with consideration of equation (4.1) and

boundary conditions (4.2)-(4.3). We shall not use the variable x, but

the old variable z. Then the equation and the boundary conditions on

the earth's surface will have the appearance:

H' 1 2 xH 1
y" H L 4H 2 xgH 1 h xghH y=O, (5.6)

+ ( 1 ) y = O = 0. (5.7)Y' h 2H (57)



- 174 -

Now, we convert the term for the horizontal component of kinetic

energy, twice applying integration by parts and using ( 5.6 - 5.7 ):

00

+E y -2 2+2g (2 gH y' +
r H y dH

0 O

+ 2g 2 2 2 xH 2 I
+ 2 - )y, - )y gy,a 2H2H ja +hr.

O00

xH h xhH

?-2 2 xgH' y2 dz +

+L2- g )y2 + xH

= -xH h xhHJ dz

1 1
0

h xH h h

Thus, we have
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E x(Q - 2 d xgH() 2 h 2(0).

0

( 5.8 )

Similarly, we convert the term for the vertical component of

kinetic energy. We are giving only the final result, omitting all cal-

culations

EB 2 ( 2 ( 1- ) 2 dz. ( 59 )B h I h
0

For the elastic energy we get the following formula

2 1 1 1

E g 2 H y'y + 4 (-
y :H g2 xgH gh gH

hH 2 y2 dz+g ( - 2 ) y 2 (0). ( 5.10 )

Here, in contrast to the two preceding cases, we did not integrate

part by part the term containing yy'. The conversion of the term for

thermobaric energy is somewhat more complex. Here, use will have to be

made of one auxiliary relation. We multiply equation ( 5.6 ) by Hy' and

then integrate, using the integration formula part by part we get

00 0t

H'(y')2 dz - - + -2(1 -- xgh 2 dz

O 0
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(0 1 1 2 2 1 .2 xH(O)
-H(0) 2 - - - y 2(0) - L H(O- xg h +

2H(0) hHhxg (0)h

+J (0) 2(O) = 0. (5.+ xgh y

Now we shall deal with the formula for thermobaric energy

E1 2_+2gp 1 )yg 1 )2 y2 dz
E= g (y')2+2g (-h-- - +gh (-- 2 dz =

00

(12 2

(x - 1)g2(y )2+xg2H'(y 2 - g ( -- -) YL+

+g ( -- dz - g ) y2 ().

Applying formula ( 5.11 )

00
L. 1 2 xH) +

ET = ( l- 1)g2(y')2+xg -- + xg (1 -----

y2  h (i. y2  (l 1 ) y22 dz +

xH() 2 1 2

x'g2 H(O) (2H(O) h- y2()+g 2  4H(O) +

SlxH(O) y(O) - g, ( ) y2 (O).
xg h xgh J 2H
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Separately we convert the first term

00

t- 1)g2 (y) 2dz = - (Vc-- 1)g2yy" dz - (x - 1)g2y(O)y'(O ) =

o o

= )g y + 4H xgH (1 - h

+ gh 2 dz- ( - 1)g 2  2H(O) ) =

xgh xghH 0H

E g2 H' 2 1 1 x 1 xH'

S-- - y ' y + 2 (-- -- +-H) -

xgH h 2  gh2H

2 2 xH( 2

S2 h ) (0). (5.1

Substituting these terms into-formula for thermobaric energy

and converting we finally obtain the following:

00

2 11', + [C 1 1 x 1 xH'
ET H gH xgH gh gh gh

FA H' y 2Y +
xghI + 2H2  gh

2 1 xH(,) ) y2(). (5 12)

g h h
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Now without any difficulty we find

E+E O [0 4 [t % +A&J 2 dz

0

r ( 2 g_) xH(O)g Y2(0).
h h

Adding up the terms for horizontal and vertical components of

kinetic energy we get the same

E E I ( E2 2 )y2 dz - ( ) xH(O)g 2 (O).

Thus, the theorem regarding parity of kinetic and potential

energy is fully proved.

In proving this theorem it was essential to assume, that the

earth is flat and non-rotatory. Otherwise the theorem could simply not

be true. If the gyroscopic forces are of significance, the share of

kinetic energy should increase; if we take only the gyroscopic-inertia

waves, the kinetic energy does not pass into potential energy at all

since the forces in this case are inactive.

Let us try and estimate how much the share of kinetic energy

increases due to the earth's rotation. This requires writing new for-

mulas for energy on the spherical rotatory earth. In this case the

field is not uniform in horizontal coordinates, and we cannot confine

ourselves to calculating energy of vertical air column of singular
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section. We must find total energy throughout the atmosphere. By using

( 5.4 ) we write a formula for horizontal energy

1 o 2 2+4J ( - s _ )2

S-1o 16a W (1 - u P

-oo

1

X2 2 2 2  d dz
f 1 - P2

The other energy components we get in the same way:

20 1
EB 2 2 H y'+ ( -2---H-)y dzd 4B 2_ _J _ )2h

h o -1

Oo

21

h o 1

2 1

Hence we discern without difficulty, that the vertical, elastic

and thermobaric energies are proportional to those values, which they

had in the case of the flat non-rotatory earth. As regards the horizontal
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energy, it is multiplied by additional multiple

[f-1 2 2 2 s 2 -

-1

-1

Let us find out by how much this multiple differes from a unit.

For this we must recall formula ( 2.4 ), whence

2Y-1 e2 2 s d2
-1 (1

p- 1 = 1 4 2 (5.1

-1

This multiple is appraised most simply, when it is possible to

use asymptotes of Laplace's tidal equation for high 
- 1 . For oscilla-

tions of the first kind ( in the present case for gravitational waves )

we have

f2 ( 1 - 2 ) 4

Therefore,
1

2 -1 (2 2 + 8 ,2

-1 1 - +2 2f 3  d

- 1 = 1 (5.14)

-1

For oscillations of the second kind ( gyroscopic-inertia waves )
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s2 2 s

f2 
f

Therefore,

1-1 f f J2 du
-1

-l 1 (5.15)

-1

It is evident, that in both the cases p 1, i.e., actually due

to rotation there is an increased share of horizontal kinetic energy. 
The

last two formulas could be even more firmly based, if an asymptotic value

is substituted in the first one

s 1f [ n(n - s + 1) pS
4' n ' 2 2n + 1 n+l

(n + l)(n + s) ps (5.16)
+ 2n+ 1 n-(5.16)

and in the second

s= n(n + 1), PS n - s + 1 2 +
+ n i (2n + l)(n + 1)2 n+l

n + s PS (5.17)
2 n-1 "

(2n + 1) n

Calculations from formula ( 5.14 ) are rather difficult. Instead

of this it would be better to present the main formula ( 5.13 ) in another

way and then to substitute there the asymptotic values of fundamental

functions. Equation
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( 1 - )+ - (1 2 2)

second of the equations in system ( 2.3 ) we multiply by U~ /(1 -)

and integrate. We will have

1 1

-1 1

Hence, and from ( 5.13 ) we get

1

f 142d
-1

P -1

Substituting here asymptotes ( 5.16 ) we find

1 (n - s + 1)(n + s + 1)n n( - 1

P fs(2n + 1) 2n+3 f 2

(n - s)(n + s)(n + 1) (n + 1) - )(518)
2n - 1 2

For the waves of the second kind we substitute asymptotes (5.17)

in formula ( 5.15 ). We shall have

I
- 1 = n(n -s+ l)(n +s+ 1) (n + l)(n + s)(n - s) . (5.19)+

(n + 1)3 (2n + 1)(2n+3) n3(2n - 1)(2n + 1)

Let us take the long gravitational waves, corresponding to atmospheric

tides. Here n = s = 2, f = 1. As shown in chapter 2, to semi-diurnal
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oscillations corresponds to -1 O.09. Substituting all this in formula

( 5.18 ), we find that p -1 = 0.3, P =  = 1.3. Thus, in this case the

amplification factor of horizontal kinetic energy due to 
the earth's

rotation is negligible. We shall see further, that for such long gravi-

tational waves the share of vertical energy is negligibly low, i.e., the

whole kinetic energy consists of horizontal motion energy. Hence it

follows that the kinetic energy of tidal waves composes 57% of the whole

energy, and the potential 43%.

An entirely different pattern is obtained for the waves of the

second kind, for instance, for the two-dimensional Rossbi waves. Let us
-1

take, for example, the same values n = s = 2 , -1 = 0.1, and p -1 =

= 10. The amplification factor is found to be so high, that practically

the whole energy ( > 90% )could be taken as kinetic. The share of

potential ( thermobaric ) energy increases only at very high Y ( low h ),

i.e., in waves of large horizontal and low vertical scales.

The theorem of virial is known in the general mechanics of the

material points system. But this does not relieve us of the necessity

to prove it in our concrete case, since, firstly, it is not always

fulfilled, but as shown by the reasons given above, only in certain

conditions, which need checking. Secondly, although, for example, the

law of energy preservation is a universal law of nature, nevertheless,

in mechanics of continuous media it is checked again, by way of not quite

trivial calculations ( which, perhaps, is the checking of the common-

sense of the main equations ). An almost independent fact is the exis-

tence of quadratic invariant - energy for linearized equations, which
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happen to be approximate equations. In any case this fact requires proof.

Exactly the same applies to the theorem of virial.

3. Energy composition of oscillations.

We turn again to formulas ( 5.5 ) for energy of various types.

Formulas for densities of horizontal and elastic energy differ only by

the multiple X H/h. Hence, it is clear that with h increase the energy

composition of oscillations should change toward:the increasing share

of elastic energy, as against the horizonal; If we take a look of the

main chart of characteristic curves ( see Fig. 4.4 ), we shall see, that

the share of elastic energy increases to the side of acoustical waves

and decreases toward the gravitational waves, which, of course, is quite

consistent with .the physical meaning.

Exactly in the same way, comparing vertical and thermobaric energy,

we not that their densities differ by multiple a2/ 0v, where 2 =
V v

= /XH - Brent - Wysel frequency for the given altitude. Thus, the

vertical energy increases in comparison with thermobaric, when the fre-

quency increases in comparison with Brent-Wysel frequency. Vertical

energy is comparable with thermobaric in the range of frequencies similar

to mean Brent-Wysel frequencies. From the Fig. it is obvious, that the

share of thermobaric energy increases toward the gravitational waves,

and that of vertical energy - toward acoustical waves, which is again

concurrent with instinctive physical reasoning.

It is possible to write a rough estimate
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2

EE ,h E = ET (5.20)
r h y B -2 T

where, H, C2 are certain average values of corresponding quantities.

Now, we add up these parities taking into account that 
E + EB = E + ET:

2

h 1 )E + ( 1 ) 0. (5.21)
H r + 2 B

This relation fixes the bond between E and EB'

In the region of h, similar to average X H values, the predominant

2 2
should be the horizontal energy, and in the region of r , similar to o-

2
vertical. However, this relation is very rough, since H and aV vary

2
in rather a wide range, and the H and Qv quantities remain not very

definite.

It is remarkable, however, that it is possible to indicate an

absolutely accurate and simple relation between the vertical and horizon-

tal energy, which permits the estimation of the share of these two types

of energy directly on the chart of characteristic curves. For deduction

of this relation-we shall use other terms for the energy components,

deduced in preceding para ( 5.8 ),(5-9). Now let us reason in this way.

Let us find the slope of the tangent to characteristic curve in Fig. 4.4.

Assuming that we shifted along this curve from point ( h,0) to point

( h + dh, T + db ), the solution y depends on quantities O and h as on

parameters and with each value of these parameters along the curve meets

the equations and marginal conditions. We denote dy = 7 . Then, by

differentiating along the curve equation ( 4.1 ), we shall have
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,, 2 ( 1 - + H
S - g h Xgh

H (1 - 3h ) y d2 H2 (~ H) y dh. (5.22)

Xg h Xgh

Similarly, differentiating the marginal condition (4.2), we shall

get

( H Hy dh (5.23)

(thedash above the variable means, as in chapter 4, that differentiation

was not by z, but by x). We multiply (4.1) by7 , (5.22) by y, substract

and integrate from 0 to 00 ° Considering, that dz = Hdx, we shall

have, after partial integration, and taking into consideration the boun-

dary conditions (4.2)-and (5.23)

o

H(0) y2 (O)dh = L (1 - ) 2 dz d0 -
hJ2 Xg h

0

1 ( - -H ) y2 dz dh.

o :gh

If the result obtained is compared with formulas for energy

(5.8),(5.9), it would be possible to obtain an exceptionally simple

relation between the energies

dh d 02E + E 0 (5.24)
r h B 2
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(with the use of logarithmic variables h I = lnh, ~1 
= ln 7-2 it would

look specially simple : d -1/ dh 1 = Er / Eg ). The ratio between

horizontal and vertical energy is determined by the slope of characteristic

curve.

Hence, incidentally, we shall obtain, absolutely unexpectedly,

one more general conclusion regarding the position of characteristic

curves of equation ( 4.1 )- their monotony. Increase of h causes

-l
increase of -l.

The relation (5.24) admits even physical interpretation. For this

a concept should be brought in of horizontal gourp velocity, or the pro-

pagation velocity of energy horizontally. Horizontal group velocity

Cr = d "/ dk. Now let us recall that qualities 0 , h and k are bound

by relation 0/k = -Jgh. We differentiate this relation along the char-

acteristic curve

d = dk F + 1 k ;2 h

hence, even from (5.24), by excluding dh we get

d0 EP 
dk - kEdk + E

or

E P d (5.25)
P EP + E

where C -- is phase velocity of wave propagation horizontally. Thus,
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the group velocity is always less than phase velocity by as many times as

horizontal energy is less than total kinetic energy.

By analyzing the charts of characteristic curves ( see Fig. 4.4 ),

we can say now, that in those areas, where the curve has a vertical

direction or very close to it, the main portion of kinetic energy is the

horizontal. But where the curve approaches horizontal direction, the

predominant is the vertical energy. In the first case the group velocity

is almost a phase velocity, in the second it is much lower than the

phase velocity. Thus, for the gravitational bunch in its lower portion -

for short ( high - frequency ) gravitational waves the share of vertical

energy is high. Gravitational waves correspond to low h, i.e., low

phase velocities -gh. Moreover, the group velocity of short gravita-

tional waves is much lower than the phase velocity. Hence it follows,

that the group velocities of these waves are very low. Their horizontal

propagation is very slow, and the motion of particles in them occurs

predominantly vertically. With increasing wave length group velocity

becomes higher.

The acoustical waves could have as high phase velocities as

desired. But the higher the phase velocity, the more horizontal is the

curve, i.e., the ratio of group velocity to phase velocity decreases.

As a result the highest group velocity is not where the phase velocity

is highest, but where the characteristic curve has vertical direction,

i.e., for curve h 0lO km, or for the main complex mode. Here, the

group velocity coincides with phase velocity and is 315 m/sec. This

velocity is the same for all frequencies, starting from some maximum.

There is practically no dispersion of waves here.
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4. Results of numerical calculations. Atmospheric wave guides.

The reasoning of the preceding paragraphs is confirmed by numerical

calculations of energy on computers. Simultaneously with calculations of

characteristic curves values were obtained of various types of energy.

Table 5.1 gives these values for some natural oscillations, selected,

for example, from various sections of the spectrum. Fig. 5.1 shows

reproduced from Fig. 4.4 characteristic curves, and marked on them 
are

the points, corresponding to examples given in the table. The contents

of Table 5.1 are as follows. Column 1 gives the number of example,

column 2- number of the wave's mode, i.e., the number of modes in function

y. This number depends, of course, on the boundary condition taken at

the top limit z = 200 m. If a different condition had been taken, for

instance y = 0, or.demanded conversion into zero of vertical velocity,

the number of modes could have changed by one.

TABLE : 5.1

Energy composition of waves.

Num- Num- .0- c c
ber ber rp

of of h km sec. E , % E 8 % Ey, % Ep % m/sec m/sec

exam- mode

ple.

1 2 3 4 5 6 7 8 9 10

1 9 1.6 13790 50 0 6 44 125 125

2 8 2.0 12530 50 0 8 42 140 140

3 7 2.6 10920 50 0 11 39 160 160

4 6 3.2 9690 50 0 15 35 178 178

5 5 3-9 8860 50 0 15 35 197 197

6 4 5-9 7212 50 0 21 29 242 242
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Num- Num- c crp
ber ber
of of h km sec. E r % Ee Ey, % Er % m/sec m/sec
exam- mode
pie.

1 2 3 4 5 6 7 8 9 10

7 3 6.8 6780 50 0 32 17 260 260

8 2 10.0 5550 50 0 50 0 314 314

9 6 3.1 188 46 4 12 38 175 161

10 5 3.5 176 44 6 12 38 186 163

11 4 5.1 145 40 9 16 35 225 180

12 3 6.3 131 47 4 28 21 247 232

13 5 2.3 81 32 18 7 43 151 97

14 4 2.7 75 29 21 6 44 164 95

15 3 4.1 61 27 23 10 40 202 108

16 2 4.4 59 25 25 10 40 210 105

17 3 0.56

18 2 3.2

19 0 8.63 12.8

20 1 9.5 9.1

21 2 9.6 9.1

22 3 10.5 8.7

23 4 80,.9 8.6

24 1 9.52 9.13 50 0 50 0 307 307

25 2 9.46 8.35 50 0 50 0 306 306

26 1 9.49 8.71 46 4 50 0 307 282
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Num- Num- -1
ber ber
of of h km sec. E , E, % E, % E , % m/sec m/sec
exam- mode
pie.

1 2 3 4 5 6 7 8 9 10

27 1 9.60 9.10

28 - 0 :8.95 40 50 <.0 50 0 314 514

29 1 21.2 38 15 35 31 19 456 135

****t*****************************************************************

-1
Columns 3 and 4 show values of natural parameters h and QV

Period T is equal to 27F . Thus, the period, given in minutes,

composes approximately /10 l , given in seconds. Columns 5 - 8 give

energy values of oscillations in a vertical column of atmosphere. They

are given not in absolute values, but in percentage to total energy. It

should be emphasised, that these values are calculated from formulas

( 5.5 ), i.e., for a flat non-rotatory model. As we already know in

the estimate of rotation the share of kinetic horizontal energy highly

increases, specially for the long-period waves of the second kind.

Finally, columns 9 - 10 indicate values of phase and group

velocities. In principle these concepts are applicable also to not very

long waves and were obtained from the formulas known to us

~= +; E
d d -r d Er

The examples in the table are grouped in series: series of very

long period, about half a day, gravitational waves, or series of short-



- 192 -

period waves, series of acoustical waves, etc.

7000 - 1 67 }
600

400
300
200 1 2

100 -

6017

40 - 28

30

20 -20

10 24
26 23

5 10 15 20 h KM

Fig. 5.1. Points, corresponding to examples, shown in

Tab. 5.1.

As we have mentioned, the results of calculations illustrate

the facts proved earlier. The fact, that in all case kinetic energy

is equal to potential, is simply the property of those formulas, from

which the calculation was being carried out, and can serve now as con-

firmation of the accuracy of calculations.

For those sections of characteristic curves, which have vertical

direction, the energy of vertical motion is insignificantly low in com-

parison with energy of horizontal motion. This applies to all waves

with h -0lO km, and also to all long-period gravitational waves. The

share of the thermobaric energy of the latter, in spite of the lowness

of vertical velocities, is high. This is caused by extremely low fre-

quency in cimparison with characteristic magnitude of the Brent-Wysel
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velocity ( two orders in our examples ).

However, for one of these modes, corresponding to h = 10 km,

even the thermobaric energy is zero. This indicates, that here the

vertical velocity is immeasurablyless than in other cases ( this circum-

stance is not shown in the tabl&, as the energy values are given with

accuracy up to whole numbers ). The entire series h = 10 km is distinct

by high degree of two-dimensionality, total absence of vertical velocity,

as in the case of isothermal atmosphere.

The share of thermobaric energy of short gravitational waves

( examples 9-18 ) is very high and the vertical velocity here reaches

high values, specially in the short-period waves. In examples 17,18,

relating to gravitational waves with frequencies close to limiting, ver-

tical energy.considerably exceeds horizontal. In short gravitational

waves the movement of air particles is mainly vertical. Group velocity

of these waves, i.e., the rate of horizontal transportation of energy,

is, naturally, very low.

In accordance with the general position, the elastic energy

increases with the rise of phase velocity, i.e., with h increase. And

in this case it is found, that the elastic energy of low mode gravita-

tional waves ( examples 6,7,8 ) is not low at all; this speaks of certain

conventionality: in this case of the name " gravitational waves ". The

share of elastic energy of acoustical waves is always considerable. The

share of thermobaric energy could also be appreciable, ,if the frequency

is not too high, and phase velocity considerable, which is related to

the presence of noticeable vertical velocities ( example 29 ).



- 194 -

Finally, once more we pay attention to the fact that the highest

group velocity has the two-dimensional waves of series h = 10 km.

A lot of interesting facts could be learnt regarding properties

of natural oscillations by studying energy distribution of oscillations

in altitude. Those of long-period oscillations of the first series

( examples 1 - 8 ) have physical meaning, energy of which is concentrated

in the lower layers of the atmosphere, or at least vanishes in sufficient

measure before the limit of 200 km. The energy of these oscillations is

retained by the temperqture lamination of the atmosphere. This separates

those modes, which coincide with resonance amplification in the problem

of forced oscillations of atmosphere. Fig. 5.2 - 5.5 show distribution

curves of energy with altitude for examples 4, 5, 7, 8. We see, that

for the first two of these, pertaining to modes 6 and 5, the energy

vanishes with altitude, but not very quickly. There is an interesting

regularity - the thermobaric energy attains highest values, where the

kinetic energy is low ( minimum ) and vice-versa. In any case the theorem

of virial is not fulfilled at every point of space, but only integrally,

along a column.

e

---- er

I -

O 24 48 72 96 120 144168hKM

Fig. 5.2. Distribution of energy in height. Example 4.
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ee

| --- e

0 24 48 72 96 120 144 hKM

Fig. 5.3. Distribution of energy in height. Example 5.

e

e- ,

0 24 48 72 96 120 144 h KM

Fig. 5.4. Distribition of energy in height. Example 7.

0 24 48 72 KM

Fig. 5.5. Distribution of energy in height. Example 8.

Considerably a sharp decay is seen on the next two figures for

modes 3 and 2. This is not incidental. We saw even before, that these

modes give very acute resonance amplification. Mode 3 is of great interest
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in the theory of tides, as it pertains to h value, closest to that, which

corresponds to semi-diurnal tides, ( as shown in chapter 3 this h = 7.9

km ). The attention is drawn on the curve to the peak of kinetic energy

at an altitude of about 55 km and the less considerable peak on the earth's

surface. The elastic energy is distributed in the same way whereas the

thermobaric has its peak at an altitude of 30 km. Above 100 km the share

of energy is insignificant. Thus, it may be assumed, that the energy of

tidal oscillations is retained mainly in the lower 100 km.

e

21
0 24 48 72 96 120144168hKM

Fig. 5.6. Distribution of endrgy in he1ght. Example .12.

e
I I -- er

I I --- e,

*1 1 I

0 2448 72 96 120 144 168hKm

Fig. 5.7. Distribution of energy in height. Example 15.
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An entirely different nature has oscillation, corresponding to

mode 2 ( Fig. 5.5 ). Here, the oscillations areconcentrated in surface

region. The energy very quickly drops with height. This once again empha-

sizes similarity of oscillations at h = 19 km with the two-dimensional

oscillations of isothermal atmosphere. This behavior is inherent in all

the oscillations at h = 10 km regardless of their periods, starting with

period of about 10 min and higher. As regards the higher-frequency

oscillations, we shall speak of them later.

Figs. 5.6 - 5.7 pertain to examples 12 and 15, i.e., to the same

mode n = 3, as the tidal oscillations, but not of very high periods.

Example 12 corresponds to period of about 13 min. 
But the nature of

oscillations here remains the same, as the nature of semi-diurnal 
tidal

oscillations. Here the quasistatic. approximation still depicts the

oscillations qualitatively rather well, although there is some quantita-

tive shift ( h = 6.3, and not 6.8 ). For smaller periods, for instance

6 min in example 15 ( Fig. 5.7 ), the pattern is considerably different

from this. Here the thermobaric energy and even the vertical are highly

significant. On the whole the energy is more diffused in height.

Fig. 5.8 and 5.9 pertain to examples 14, 17 and 18. All of them

are characterized by low h values. We know, that short gravitational

waves with low h: values have the tendency to concentrate in wave

guiding layers. There are two of these wave guides in the atmosphere:

deep wave guide in the zone of maximum static stability at height of 110

km and a less deep wave guide at a height of 30 km. In example 17 the

oscillations are concentrated in the lower wave-guide, in examples 14
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and 18 - in the upper. Examples 17 and 18 pertain to shorter waves,

and the concentration within the wave guides is tighter. Moreover,

example 14 corresponds to higher mode (4); therefore, the energy curve

has a more dissected view ( high number of peaks ).

----- er

Fig. 5.8. Distribution of energy in height. Examples

14 (a) and 17(b).

, --- e.
I I

I I\ l

Fig. 5.9. Distribution of energy in height. Example 18.

Let us pass on to acoustical waves. As shown by Fig. 5.1, our

examples pertain to a small area of spectrum - to oscillations with

period of about 1 min of the first modes. This area is rather interesting.

Here begins the appearance of short - wave asymptotes. For the short

acoustical waves there are ~ro wave guides in the atmosphere : deep wave
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guide in the cold layer in the mesosphere at an altitude of about 84 km

and a less deep wave guide in the stratosphere at a height of about 17 km.

The shortest waves should concentrate in the deep mesosphere wave guide,

less short could be even in the stratosphere.

As mentioned in the preceding chapter, there is a composite mode

h lO km, consisting of separate portions of characteristic curves. This

was first discovered by Press and Harkrider (1962) and Pfeffer and

Zarichny (1963). It is possible that each characteristic curve with

decrease of period becomes for a time *a part of this complex curve, so

that with further decrease of period to withdraw from it to the left and

toward the limit h =)KH. . At least for those characteristic curves,

for which we carried out calculations, the following regularity defines-

itself. For portions of characteristic curves, which make up the compo-

site curve, the corresponding natural oscillations are concentrated in the

lower wave guide. When the characteristic curve with decrease of period

withdraws to the left, the energy passes into upper wave guide and remains

there with further decrease of period. Let us take, for instance,

Fig. 5.10a and 5.10b (examples 24 and 25). They appear.absolutely iden-

tical, whereas the first one pertains to mode 1, and the second to mode 2.

But the first one corresponds to slightly higher period, when mode 1 was

still the part of the complex mode h 10lO km, but in the second case,

for slightly smaller period, the modes have shifted: mode 1 moved away

to the left, and was replaced by mode 2. The fundamental function i4

now has one more mode, whereas the energy curve looks the same.
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e

e e e)

0 24 48 72 0 24 48 72 0 24 48 72 96 120 0 24 46 72 96hKM

Fig. 5.10. Distribution of energy in height. Examples 2
4 (a),

25(b), 26(c), 27(d).

10 I0 50 70 90 110

Fig. 5.11. Distribution of energy in height. Examples

19(a), 20(b), 21(c), 22(d), 23(e).

For comparison it is shown in Fig. 5.10c, what happens with

oscillations of mode 1, when the characteristic curve withdraws to the

left. We see, that the energy has begun passing into the upper wave
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guide. With further decrease of period it will completely pass into

the upper wave guide, but it is not shown here. From Fig. 5.10d it

can be seen, how the energy of mode 2 oscillations appeared prior to

characteristic curve becoming a part of composite mode h 0l km. The

energy'was also concentrated in the upper wave guide. Therefore, with

decrease of period, when this curve became a part of complex curve, energy

passes into the lower wave guide.

Fig. 5.11 shows a series of curves, corresponding to examples

19-23. Here, the calculation is of waves of the same length, but diff-

erent modes, starting from mode o and ending with mode 4. There is an

interesting alternation of wave guides with the increasing number of mode

the number of energy peaks, naturally, increases also.

The complex mode h 10 km, corresponding to waves with highest

group velocity of propagation, plays, apparently, the most significant

role in wave propagation from high intensity disturbances.

Wave guide properties of laminated atmosphere in respect of

acoustical waves were investigated in the well known book of L.M. Brek-

hovskikh (1957), Yu. Gazaryan (1961) investigated them for acoustical

gravitational waves, but his results are very sketchy. Once more we

mention the work of Press and Harkrider and Pfeffer and Zarichny.

Interesting observation material is given in the work of Diamond, (1963).



- 202 -

CHAPTER - 6.

EXPANSION ACCORDING NATURAL OSCILLATIONS

1. TWO-FOLD COMPLETENESS OF EIGEN FUNCTIONS:

In preceding Chapters determination was made of all the

natural oscillations of atmosphere and some of their properties were

investigated. Most frequently, these natural oscillations have interest

not as themselves, but as those elementary solutions, which make

up any transitory solutions of a system of equations in hydrodynamics.

In this Chapter we shall deal with questions, related to the

possibility of such expansion, with formulas, which permit the

effective calculation of the factors of expansion. The most

significant in this case will be the energy ratios, determined in

the preceding Chapter..

We shall be interested now in motions of not very large

scales of time and space in connection with the application of the

theory (in the next Chapter) to the study of disturbance propagation

from instanteneous point source. Because of this it is possible

without any detriment to analyse the model of atmosphere above the

non-rotatory earth. If in the main system (1.1') - (1.5') the

Coriolis terms and discarded, it will be easy to see, that further

elimination of unknown quantities and reduction of system to one

equation can be carried out generally, not taking into account the

dependence on the time of the exponential, i.e., to obtain equation

for divergence containing time derivatives. The equation, as can be

easily checked, will be as follows:



- 203 -

X - 2 d - g X - c2 X g A x=o. (6-1)
ttt ttzz dz ttz  tt -

The equation was found to be of the fourth order in time,

in spite of the fact, that the initial system was of the fifth order.

This equation, therefore, does not contain some of the system's

resolutions, namely, the stationary, independent of time. At the

initial moment four conditions should be preset. The initial

conditions for the function X and its three time derivatives are

expressed through starting conditions of the five initial fields

u, v, w, p, p . Thus, for example,

Xt = - P -[ (Pz + ) (6-2)

Derivatives Xtt and Xtt t are calculated from the general

formula

' 2"c "-
2 - g + 2 1 1  c -3)

-z

where substitution has to be made either of fl = X, f2 = Xtt, ' = w'

or fl = Xt' f 2 = Xttt' c= -(P + gp ). Passing from function X by

replacement of variables to function y, as shown in Chapter 1, we

obtain also the initial conditions:

Y (5c, 9, X, 0) = Y (Vq, e, X),

Yt (ce, e, x, o) = y (1) , e, x),

Ytt(c, 8,. X, O) = y(2)( C, X),

Yttt((I, x, x ) = Y(3)(T, e, X). (6-4)
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Another result of the non-rotation of the Earth is the

fact, that the sign is not included in the-equations. If 0- at a

given h is the natural frequency, then also is - a . We denote by

y(O, h; x) the solution of equation (4-1) for the vertical component

corresponding to parameters 0 and h. Assuming n to be the number

of the characteristic curve of Laplace's equation

22
sa

gn (n+1)

and j the number of characteristic curve of the equation (4-1), it

is convenient for instance, to number the acoustical curves by

positive numbers, and gravitational by negative, then j = + 1, t 2, ..

The intersection points of characteristic curves of equations for horizonts

and vertical components will get double numbers n, j. The corresponding

and h we denote by

2 2
0 n, ja

Tn, J, n, j gn (n + 1)

and the eigen function by yn,j(x). The the general solution should be

Y( , , X, t) = e i s  PnS (COS O ) Yn, (x)XX

n,s,j

X (ansjei t e- tX (a eio n,j + bn .e in, jt), (6.5)n~as ~sj
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where the factors a and b should be determined from the initial

conditions. For this we expand the initial functions according to

spherical harmonics

Y(k) (, e6, X) Y Y(k)eisypn Is (COS ) (k = 0, 1, 2, 3),n,s n

after which it will be necessary to find the expansion

Y o)(X) = C (X),n,s n,s,j n,j

y(1) (x) = d Y (),
n,s n,s,j n,j

Y(2) (-2 ) C Y (X),
n,s xn,j n,s,j n,j

y(3) (--2 )d Y (X)
n,s(X )  -n,j n,s,j n,j M

where

C =a +b
n,sj n,s,j n,s,j'

dn,s,j= in, nj(an,s,j - bn,s,j

This system separates into two independent systems: with

factors Cns j

Y(0) x) = C .Y (X),
n,s n,s,j n,j

y(2) M = (- 2
n,s n,j n,s,j n,j

j
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and with factors d
n, s, j

y(1) (M) d Y X)
n,s n,s,jYn,j

(2) ) d Y (X).
yn,s M n,j n,s,jn,j

We shall take n and s as fixed, and shall omit these indices. The

systems obtained are absolutely indentical. It is required to find

factors Cj such, that

f (X) C JY (X),

j

g (X) = , C Y j(X). (6-6)

where f and g are the known functions.

For the existence of such an expansion the significance,

of course, is of the system's completeness of functions YJ(X).

However, the simple completeness is not enough. We must find a

concurrent expansion of two functions f and g with the same factors cj.

The possibility of this type of expansion for any f and g is known as

the double complete system of functions Yj(X) (Keldysh, 1951).

The proof of the two-fold completeness and formulas for

the factors will be given in the next paragraphs, but now we shall

explain the concept of two-fold completeness in a simple particular case.
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Assuming 8 = const, if we take instead of our more complex a

simple boundary condition on the earth is surface, Y = 0, the

matter is quite simple. We can prove in the equation.

Y" + - - H2k2 2 k + Y = 0 (6-7)

(k2 = n (n + 1)/a2) denote 2 + k2g/ a 2  2. Then there

is a classical problem of Schturm-Liuville with natural parameter

and linear boundary conditions. It is known that this problem has

a complete system of eigen functions. But each p value is obtained

at two different 0,2 values, since the 2 is expressed through o-

fractionally. (Strictly speaking, it is also necessary here to

prove, that the minimum of function 2 + k2 g/ -2 is less than

the minimum eigen value 2L , otherwise the least eigen values /12

will be obtained at complex 0-2 values, whereas, we are interested

only in real values. The corresponding property is known as

"high-intensity damping" and will be proved in the next paragraph).

It is easy to see, that the system of eigen functions, composed of

two similar sets, has a two-fold completeness in the sense of possible

joint expansion of (6-6) for two arbitrary functions. Actually, by

scalar multiplication of both the portions of equality (6-6) by one

of the eigen functions y (x), on the strength of the latter's

orthogonality, we get a system of two equations with two unknown

factors C

(f, #r) = Cr + C

r(g, r 2 2
rr r r''
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where Lr, is another value of parameter y , at which we obtain the

same 2 and the same eigen function. For the existence of the

required joint expansion it is necessary and sufficient, 
that all

these systems had a solution. But this is actually so, because all the

2

2; are distinct one from another.

If (2 is included in the marginal condition, then the

situation is considerably more complex. In this case (at = const)

the two-fold completeness is proved in the Author's work (1960). It

should be mentioned, that here we do not get any more twice the same

set of eigen functions, but two different complete sets, one of which

corresponds to acoustical, and the other to gravitational waves. There

is also no orthogonality here of eigen functions.

One more thing should be mentioned. Since with 6- the -a

is also an eigen value, the resolution of Koshi problem for the

equation of fourth order did not require a four-fold completeness 
of

eigen functions and it was possible to take twice one and 
the same

two-fold complete set. If we take a model of the rotating earth,

the matter here will be different: for positive and negative 6 it

would be necessary to take different characteristic curves of the

equation for the horizontal component and, therefore, different eigen

functions. Moreover, there would be an addition of one more set, related

with gravitational gyrosoopic waves, in complete accordance with the

system having a fifth time order.

Paras 2-4 contain purely mathematical, slightly abstract and

complex investigation of a two-fold completeness; in superficial reading

these paragraphs may be omitted. The importance for applications is only
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of formulas for expansion factors of para 5 (6.49) - (6.50), which will

be used in the next chapter.

2. PROOF OF COMPLETENESS. BOUNDARY CONDITION Y = 0:

We begin by proving a two-fold completeness of the eigen

functions system for a simpler problem with boundary condition on solid

surface Y = 0 at X = 0. The alternation, fixed in Chapter 4, of the

eigen values of both the problems will make it possible for us in the

next paragraphs to deduce hence the completeness of eigen function for

our more complex problem.

To simplify the demonstration we shall assume the atmosphere

as finite, by placing at a certain height Xo boundary condition

independent of , for example Y = ). We shall denoteZl = a 2. We

shall reduce the problem now without difficulty to the form applicable

in which are certain known theorems, which fix the completeness. Let

us take the operator

F=- d + ±+H
dx

in condition Y = 0 at X = O and at X = Xo . This is a positively

determined operator, having inverse integral operator with core, which

is the Green's function of equation - y" + + H2k2)y = J . We denote

-1
this inverse operator F-1 . It is a positive, quite continuous operator.

Therefore, there is operator F . We substitute Y = F in equation (6-7)

and to both the portions of this equation we apply operator F
-M
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uu-- F- F- u = 0.
xh x

Here H/9 g and Hk2/ - operators of multiplication by

functions H/ X g and P Hk2/X. The equation obtained is a particular

case of equation

u = Gu + -1 Hu,

where u is vector of Gilbert's space and G and H, positive quite

continuous operators. This type of equation was analysed in the work

of N.G. Askerov, S.G. Krein and G.I. Laptev (1964); in a more suitable

form for our object it is stated by G. Langer and M.G. Krein (1965),

and also by M.G. Krein and I.C. Gokhberg (1965).

We shall demonstrate that the bunch of operators I -ZG -)2 1H

(I - single operator) pertains in our case to highly significant

particular type of bunches, known as highly damped. The bunch is

denoted as highly damped, if for any vector u there is fulfilment of

inequality

4(Gu, u) (Hu, u) < (u, u)2

In other words, equation

(u, u) - 1 (Gu, u) - - (Ru, u) = O (6-9)

as quadratic equation relatively to 2 at any u has both the radicals

real and different. The term "highly damped bunch" or "highly damped

system" has its origin in mechanics, where these equations actually
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depict systems with high friction, ensuring purely aperiodic damping.

In our case this term is only formal.

If we return from u to y, the equation (6-9) will be

equivalent to equation

x

Y + -1 - H2k 2  2 y dx =0

L
o

for all functions y(x), which convert into zero at the ends of the

interval. Assuming that at a certain y(x) this equation has

immaterial radical s= r i, 4 O, then, by integrating

this equation .by parts, we get

x x
o 0

dx + 2k2 H k g dx+

Jr L
o o

X
0

+ i H - dx = o. (6-10)

o

The real and imaginary parts should individually be equal to zero

X0

0H 1 - 1 dx = 0 (6-11)
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and

X X

y, 2dx 1 H2k2k H 2 1 2dx. (6-12)

0 o

The same equalities hold true, if there is a real

multiple radical. Now we bring into analysis energy integral. We

denote E = F + Ev, where

Er k2  H y + g y - 2 dx, (6-13)

o

x
0

=B - y' + (k2H - y dx. (6-14)

These formulas have the same appearance, as the formulas for

horizontal and vertical energy in the preceding chapter, but this

time they are written for complex I and y functions. Besides, the

latter are not assumed to be resolutions of equation. Next follows

the conversion, similar to the one carried out in the proving of

the theorem- of virial

X

Er = k2 o g2 gH g

0o +L H- I 2 y 2 dx.
L)
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Using for the substitution of the first term formula (6-12),

replacing in the second and third term by /z r + i 2 i and

integrating by parts the portion containing Z r' we get.
X

- g2 k2  2 dX + i { H (j'y - y(Y)dX.

o

If we remember, that B = (J- 1)g + )gHj, the term in

round brackets becomes considerably simpler and after certain

calculations we shall get.

X

E = k2 H 2(If 2 -g 2k2) - 2 ) dX +

o

x

+i g2k2Z dX.+i H (y y - y y dX.

0

Exactly the same conversions we carry out in respect of

E . Without bringing forward calculations, we write the result.

o

X
0

+ i - H yy g\Y) 7di3'.
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By adding both the formulas we get.

E ,Z,, -2  2 _ g2k2) o 2 2 dX. (6-15)

o

The left portion is always positive. Therefore, the

right portion also cannot be converted into zero, which contradicts

assumption (6-11). Thus all the I radicals are real and different.

It is already clear, that our problem or its equivalent

problem (6.8) can have only real eigen values, since if the (6.8)

is fulfilled, then it is even more so with (6.9). In Krein and

Gokhberg book (p. 366-367) the following assertion is given: "For

highly damped systems (6.8), where G and H are positive quite

continuous operators, the theorem holds true of the two-fold

completeness of the natural vectors system. Moreover, the system

of natural vectors consists of two total bases. One of them

corresponds to monotonously increasing succession of eigen values <...

for which the following relation is being fulfilled

X
0

H ( 2 gk2 dx > O (6-16)

(our denotations), i.e., they are the bigger radicals of the

corresponding quadratic equations (6-10) (at Z = 2r i = 0). The

other corresponds to monotonously decreasing succession of eigen

values > (2) > (2) ... , for which

x0 2

S H ( ~2- gk2 'dx < O, (6-16')
o
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i.e., they are the least radicals of quadratic equations".

On the strength of relation (6-15) conditions (6-16) and (6-16'

could be substituted by the following. For eigen functions of the

first kind 2 > gk, and of the second kind .Z gk. In other words,

in the first case the frequencies are higher than Peckeris frequencies,

corresponding to k, and in the second case lower. The first set
to

pertains to acoustical waves, and the secondjgravitational(somewhat

conventionally, because so far we are analysing the simplified

boundary conditions). The Peckeris frequencies divide the

acoustical and the gravitational waves; the acoustical set of

resolutions and the gravitational set form each separately total

space basis.

This basis is not orthogonal. But it is the so called

Riss basis (see Krein and Gohberg, p. 373), i.e., a basis obtainable

from the ortho fixed by application of limited and reversible-limited

operator.

3. AUXILIARY FORMULAS AND ASYMPTOTIC EVALUATIONS:

We change-over to proving the completeness of eigen

functions at real marginal condition, dependent on eigen value.

Let us recall the curves in chapter 4 of functions M( /' ) and N( ).

They are reproduced in Fig: 6-1. At the intersection of both the

curves we obtain natural frequencies. Frequencies of acoustical

waves 0 (= ) we numbered O(= 1, 2, 3, ... , and of gravitational

waves t= - 1, - 2, -3, ... By we denoted natural frequencies

of investigated problem with marginal condition y(O) = 0. As shown



- 216 -

in chapter 4, eigen values of both the problems are intermittent, as

shown in the figure. Thus, between the numbers 2 and ) it is

possible to fix reciprocally unambiguous correspondence, shown in

the figure.

I

Fig: 6-1 - Eigen values of two marginal
problems.

In the next paragraph it will be shown, how, using this

correspondence, to re-expand functions, expanded by system y ,

by system !Y ; thereby fixing the completeness of the latter.

With this object we .shall require primarily asymptotic evaluations

of eigen values and eigen functions of high numbers, assuring

convergence of those series, which will be encountered, and also some

auxiliary functions.

At Z--oo, i.e., in the case of acoustical waves, the

equation could be asympthtically written as

y" + H y = 0.
Xg
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x 4

Substitution of H/) gdx, y = Cg/H reduces

this equation to " + p , * 4 = O, where p is a certain function.

At high Z this is equivalent to " + 0 = 0, whence we get

x

y-n! j V1, 'dx.
x

In the obvious way we obtain the asymptotic evaluations

(letter K marks different constants)

X
0 o

.-- _ , = -- dx , 1, 2, DG, (6-17)

0 2 (6-18)

X
x

0

K1 (y) 2 dx < K2, (6-19)

o

H ( *)2 k 2q (Y )2 d. ,-K ( 2 )2, (6-20)

y (0) - K, Y (0) < K . (6-21)
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In the same way we obtain evaluations at )-- 0 in the

case of gravitational waves. The equation becomes simplified and

appears as

HE k2  1
y" + H y = 0,

whence

1 - H k 2  dx

y k sin dx
H k 2

x

and

x

04 b2 2( b =2 dx ,0(= -1, -2, *.&1 (6-22)

O

o - 2 )<f K Z 2  (6-23)

x
0

K1  (y;)2 dx : K2' 
(6-24)

0

H ( *)2 k2 g 2 dx - K, (6-25)

0

0) (o) / K . (6-26)

CKY
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We bring-in some integral relations. The eigen

functions meet equations

y"' + H2k2 + ( + y = 0. (6-27)

on condition

y (0) + H(o)g - y (0) = 0 (6-28)

and equations

+ 2 H k + O (6-29)

on condition

y; (o) = O. (6-30)

Multiplying (6-27) by y (x), and (6-29) by y (x),

substracting from the first product the second and integrating

with an estimate of boundary conditions, we get.

H y y*k28 dx = y (0) y (0) (6-31)

0

In the same way, but using only (6-27) or (6-29), we shall

have

X
0

H ( - k2 g) y*y dx = 0, X (6-32)
O
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and

X
0

o (Ii2U k2g) y y1 dx = H(O)g2 k (0) y (0), . (6-33)

0

Let us recall a formula, which was obtained somewhat

more generally in the preceding paragraph

X

SZ()2 - kg (y ) dx = XgE
P-

0

- *

E = , E > 0. (6-34)

( f*)2 2k -

4. THE PROOF OF COMPLETENESS: THE REAL MARGINAL CONDITION:

The two-fold completeness of the system of functions l is

fixed. Therefore, for any two functions fl and f2 there exists an

approximation

N1
'

fl~C, y (

- N1

N1

- z C)r "  , (6-35)
-N
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as accurate as required at sufficiently high N1 . In particular,

taking as two such functions yo and -2 Y~ , we shall get

N

Sf * + r (N)

I=-N

N

yf + s(N) (-36)

= - N

where r(N) and S (N ) are residual terms:

-N-1

r(N) f y
Kr YY + f YC

N + 1 -00

-N-1

(N) f (6-
x = - I yr (6=2-37)

N +1 -o00

(In each of the written sums Y takes on all the indicated values,

except y = 0, to which none of the eigen functions correspond).

Assuming we shall be able to find matri h (N) NN inverse to

matrix /I fV//!NN. Then
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N N

Y = h(N) h(N) (N)

= N = -N

N N

I- h (N)s (. (6-38)

r= - N o(= - N

Further, the problem will be to prove, that in these

formulas the residual terms (second terms of right-hand portions)

could be made as low as desired at sufficiently high N. Then

substituting hence the term for y* and - 2 y in (6-35), we

shall get the following approximation:

N

N

where the factors are

N

C h ( N ) C

= - N1

The accuracy could be made as high as desired, if first N1

is made sufficiently high, and then N.
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Thus, it is required: a) to find the factors fy 
and to

evaluate them, b) to evaluate the residual terms (6-37), c) to calculate

the elements of the inverse matrix h(N) and to evaluate them and d) to

give evaluation to residual terms in formula (6-38), from which it would

be evident, that at fixed y' they strive to zero at N--*Do . Evaluations

which should be carried out, involves rather bulky calculations.

We shall omit the details, which, anyhow, it is not hard to restore

every time, using evaluations of the preceding paragraph.

In order to find the factors fY , we multiply both the

portions of the first of equations (6-36) by H A k
2gy- , of the

second by H, - y- , add and integrate by x (y - certain fixed value

of index y ). Formula (6-32) will give in this case

X
0

SH ( - k)k 2 g) y-y-dx, (

0

Recalling (6-31), it is possible to obtain

* (0) *' (0)

f , - (6-40)
p(Y x

, o . . .2 * *
_ ) ( , - k g)y y dx

0

taking into account besides (6-34), we get

, * (0) *' (0)
f, 0 = . ... T-o (6-41)
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Formula (6-40) permits giving the following evaluation,

if we also take into account (6-20), (6-21), (6-25) and (6-26)

o ok< > o, >o

' 2 2 y~ i0 < 0 (6-42)

1 o o< > , y > o

1 G& x<o 7 >o.

Now we resolve problem "b" - evaluation of residual terms

in (6-37). We shall evaluate integrals of the squares of these

terms. Functions Y (y >0) are asymptotically orthogonal

(with H weight), whereas, the integrals of their squares are

confined within a constant range[formula (6-19)7; exactly the same is the

case with b< 0. Therefore, the square integral of residual

terms gets evaluated by the squares sum of expansion factors by
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x-N - 1

(4N) 2 xj 2

o =N + -

X -N-1
o

(N) 2 dXI; 2 (6-43)

o y=N + 1

(N)
Let us evaluate, for instance, S at O > O

X

o N) 2 dX 2 2 22 +

o O=N+1 (

-N - 1 o oc

4 2 4 4 x 2 dx
2,(c 2 - (x2 2

= -o =N+I N + 1

oo2
= M 2 )2 (K < 1

x 

)1

N+ 1
C<
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Similarly the evaluation is carried out of this

residual term ato( < 0, as well as of the second residual

term. Here is the result of evaluation.

xN + 1 ,o>

4(N) 2dx (N) 2dx< (6-44)
o o -(3 N+ 1

K. , <" 0

Now we proceed to resolving problem "c".- finding of

inverse matrix. Using formula (6-41) we calculate the determinant
N

of matrix if 0 /--N

1=-N Y(0) y(o) () IA
det fN 0 PN

S det N- ) -1

The remaining determinant is calculated very simply

see, for instance, the well known book of Polia and Sega (19569.

We have

N

det fo( -N

K) Y fkoO
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The determinant is distinct from zero. In order to

find the element h , it is necessary to calculate the minor

(i.e., determinant of the same type, composed of the same elements,

but with omitted elements of the ~ - th:line and ~-th column) and

then to divide it by the whole determinant. We find.

N

h ((N) )

Now we evaluate h at fixed y by N and o . We

take the multiple

~ 1 ~-1 . (6-45)

S N 1= -N

1 OeIy l/Ot ,y

We analyse first 0( negative. The product we divide

into two parts - for positive and negative 1. For the first of these

parts the fraction is evaluated as 0(1-3) if we use the corresponding
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asymptotic formulas (6-17) - (6-26). Thus, this portion of the

product is limited by the absolute constant. Limited in the same

way is the second portion of product, for negative 1. In fact, for the

negative 1 the evaluation is as follows:

-1 /- 2

1=+ 2 22 exp K 2 21T <K.
1=- 1 =1 212 12

Now let OC be positive. The evaluation will be slightly

more difficult. Part of the product, corresponding to negative 1, is
-1

limited, since it can be evaluated in the following way: n L1 + O(1-4 J)K.

But with positive 1 we have

K -+ (12 K exp1(1_ C 1(1 )
1=1 1=1

_ +

-K exp [n 1- i

+ In - 1- K
-l N+1

Let us sum up. With negative 0( multiplier (6-45) is limited,

with positive X it does not exceed K 1 1- - /(N + 1). The

remaining multipliers are evaluated quite simply. Ato>O we have
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< K, _ K_

whereas at 0( < 0

Finally, we estimate the remaining multiplier

1 K

at 4 > 0 and the multiplier

at < O. Combining all evaluations, we get atO> 0

h K -1(6-46)1. Y/ 1 -N+ 1

and at ~X <

lh N) < K (6-47)IhWI< K
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It remains to resolve problem "d", i.e., to evaluate

residual terms in formula (6-38). Since for r(N) and for S(N)

there are similar evaluations, then, apparently, it is required

to evaluate the sums.

N - 1

h(N) r(N) h (N) (N)
= 1 0= - N

For this object we use (6-44), (6-46), (6-47):

(N) (N) 2 h f (N) dx

I h =1 <-0 %0( =11=1

= K 11 K

the theorem.the theorem.
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5. EXPANSION FORMULAS:

Thus, we have proved the two-fold completeness of the

system of functions, i.e., the possibility of approximating (6-39)

for any wo functions at any preset accuracy. But so far it does

not follow from anywhere, that any two functions could be expanded

into series by yX . In other words, would not it happen, that

for rising the accuracy of the approximation it would be necessary

each time to take absolutely new linear combinations in the

right-hand portions of (6-39). Now we shall demonstrate, how

to calculate effectively factors de . It will be. found, that

factors d, are independent of N, but depend only on o( , and this

terminates the proving of expandability into series.

To calculate factors do , we multiply both the

portions of the first of equations (6-39) by H A k2gy ., the

second of these equations by H , add them up and integrate

by x. To sum obtained we add the first of the equations, taken

at x = 0 and multiplied by 9 H(O)g 2k2yy (0). Considering the

integral relation (6-33), we get

X
o

H (k 2g 1 g + 2  dx + X H(0)g2k2 f1 ()y (0) =

S 2 2
Q) H( - k2 g) d +XH(0)g2k2 2 (0) . (6-48)

0T
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This equation could be transformed, recalling the formula

deduced in chapter 5, for the sum of horizontal and vertical energy.

r + E - 2  2 g2k2)S H( 2 gk2) y2 dx -

-X H(O)g2k2y2(O0

Then the formula for the factors could be rewritten in

this way:

X

H (k 2 g1 + f2) y dx + X H(0)g2k21(0) )y (0)

C ; (6-49)

It would be expedient also to recall, that EY is actually

energy with accuracy upto multiple. If the true energy value is

denoted by (see end para 1 of chapter 5), then we get

X Po r

,2 4- g2 k
2  E

and

Xpo H(k 2
1 + 2 2) y dx +X H(0)g2k2 f (0) (0

o ~ %/ 4- ~3e
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The factors, as stated, are independent of N.

We make one more remark, We analysed the problem for

the sake of simplicity at the end segment t0, Xo1 . In this

case the . value, equal to gk, i.e., the Peckeris value ceases

to be the exact eigen value. There is appearance of oZ, near,

but not equal to gk. The system completeness of eigen functions

takes place, as demonstrated, without the estimate of this eigen

value, i.e., the latter seems to be unnecessary. But at the same

time formula (6-48) gives for factor Co, as well as for the other

factors, value, generally speaking, distinct from zero. Is this

not a contradiction?

The answer to this question is the fact, that in

deduction of formula (6-48) we assumed not only the system

completeness of the functions, but also that the arbitrary pairs

of functions could be approximated not only in mean square, but

also at X = 0. With this the system y at o , 0 is found to

be insufficient, and it is necessary to take into account function

Yo also. The position here is quite similar to that, which takes

place in the following example.

Let us take two systems of functions at segment 0O, v7i

namely, the system sin (n - -) (T - x) and the system

Isin n(x - 7 ) , n = 1, 2, ... Both the systems are

complete in mean square. But any continuous function, equal to

zero at x = Vc , could be expanded in uniformly converging series

according the first system. But from the second system the expansion
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is only of those functions, which convert into zero also at X = 0.

To make it possible from the second system to expand into uniformly

converging series the same functions, as from the first, it should

have an addition of one more function, for instance sin ( Xt - X).

Exactly the same position is in our case. For a uniform

convergence, and therefore, also for the accuracy of formulas (6-48-6-50)

it is necessary to estimate also yo* But what will happen if we change

over to the precise case of semi-straight line , oj ? Here the

position changes. Formula (6-49) at y = O loses its meaning, there

is an appearance in it of uncertainty, as = gk, Eo = 0. But it

is possible to use the initial formula (6-48). The factor at Co in

the right portion is, generally speaking, distinct from zero; as

regards the left portion, then it is equal to zero at arbitrary

initial conditions. This at the beginning seems strange, since,

into indicated formula enter arbitrary functions fl and f2. Actually,

these functions arbitrary are not but the initial fields u, v, w, p, p ,

through which these functions are expressed by formulas (6-2) and

(6-3).

It f1 and f2, expressed by these formulas, are substituted in

the left portion of (6-48) and pertinent damping is assumed of initial

fields with height (finiteness of energy), we shall get equality to

zero of this left portion, i.e., of factor Co . Thus, actually, the

Peckeris eigen function does not enter into expansion. If the semi-

straight line [0, 0o0 is substituted by segment EO, Xo1 , then

it will enter into the expansion, but with very low weight, as these
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problems are similar.

This statement conforms to the remark made in Chapter 1,

in regard to the fact that Peckeris waves carry infinite energy

and, therefore, cannot enter into conposition of 
real solution

with finite energy.

We must recall again, that if the solution is expanded

in eigen values, then its corresponding energy is the sum of

energies of the component oscillations, in accordance 
with additive

energy, proved in Chapter 5.
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CHAPTER - 7

PROPAGATION OF DISTURBANCE FROM INSTANTENEOUS POINT SOURCE:

(1) PROPAGATION VELOCITY OF DISTURBANCE:

In preceding chapters the investigation was of periodically

time dependent solutions, having the shape of global waves. Thereby

it was assumed, that from the excitation moment of this wave there is

a sufficiently long time interval, so that the wave gets fixed.

The study of these waves is interesting, when we are dealing

with sufficiently strong disturbances, as are able to encircle the globe

several times without losing considerable part of their energy. This

condition is fully met by the large scale waves, of the type of Rossbi
r

waves, and also acoustical gravitational waves, evident as a result of

particularly strong disturbances of the atmosphere, such, as for

instance, the famous explosion of Karakatau volcano and the explosions

in the tests of nuclear arms. Here, the waves are mainly of

two-dimensional type, corresponding to h = 10 km, propagating without

dispersion with velocity about 300 m/sec.

However, wave resolutions permit the solution of other class of

problems also - problems of transient oscillations, since any transient

resolution could be expanded from the wave resolutions. Local disturbance

of the atmosphere excites a wide spectrum of waves. The resolution

represents superposition of these waves. Hence, these waves diverge

with different velocity due to dispersion. We know that phase and,

specially, group velocities of acoustical waves are considerably higher

than those gravitational of waves. Therefore, the acoustical waves, as

may be expected, diverge considerably faster than the gravitational waves.



- 237 -

Sometimes after the passage of wave front there should remain mainly

the gravitational component.

In the first paragraphs we shall analyse a model of the flat

earth and the discussion will be confined to the simplest case,

admitting analytical solution, - the case of isothermal stratification.

Our first problem will be to find the solution in the case, when the

initial disturbance is of point-type shaped, i.e., to find the function

of Kosh problem effect. Hence, we will have to divide this resolution

into parts, corresponding to acoustical and gravitational waves, and,

finally, to investigate the time behavior of these parts, it is at

t co . The asymptotic formulas obtained will actually show

considerably higher damping of the acoustical part as compared with

that of the gravitational.

The results will also be given 6f numerical calculations, carried

out by Romanova (1966). It will be found that asymptotic formulas at

t oo depict quite well (atleast qualitatively) resolutions for

comparatively low t values. In the last paragraph we shall discuss the

case of the spherical earth and the real stratification.

Let us take the system familiar to us, of equations in Cartesian

coordinates

= - - + v,
at 1

v ap l
P

) t- = - z " P
at aZ a -p



- 238 -

-t = .a + 7y + -- dz -

t =(,C2 + + )+ gp. (7.1)

Here )- formal factor, equals to one. It is brought in in order

to see, how the results change in quasistatic approximation ( X = 0).

In this paragraph we shall assume X = 1. We are dealing now with Kosh

problem, i.e., assume, that at t = 0, the values of all the functions

are known. We must first mention that the resolution of Kosh problem

is unique and, moreover, it is possible to indicate the zone of initial

data effect. We prove this by means of energy integrals. For each

point of four-dimensional space (t, x, y, z) it is possible to plot a

characteristic cone with apex at this point, resting on a certain closed

zone of three-dimensional space (xa y, z) at t = 0. At each surface

point of this cone the perpendicular meets the condition

n2 C2 (n + n2 + n2 ) = o. (7.2)nt x y z

Now we take the relation familiar to us for energy

-_ _ 2 2 2t  L + ++ I 2p 2 2j- 2 (p - C2 p )  +2 x

+ (pu) +- (pv) + (pW) = 0 (7.3)

We integrate this relation by volume, limited by the characteristic

cone with the apex at point (to, X , yo, Zo) and hyperplanes t = 0, and

t = to - . The left portion of relation (7.3) has the aspect of

four-dimensional divergence, therefore, the integral on four-dimensional

volume could be substituted by the integral on its three-dimensional

surface. This integral on top base 0
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2 v 2  2 1 p C2 2

p2 + 2 p,

)(. d yrdy dz, t = t o -'

integral on bottom base 00

M u2 + v 2 + -C& 2  
1 200

2 2 2

+ - ( p - C 2 d Xdydz, t = 0

and on lateral surface 6

u2 + 2 2 + (p + ( 2 2 t +

u 2 2 2 -X V 9-(p ( C f nt +

+ (pu) n + (pv) ny + (pw) nz dY .

We evaluate the last three terms of the integrand function,

using (7.2), inequality of Koshi-Bunyakovskii and the fact that the

average geometrical of two quantities does not exceed their arithmetic

average

(pu) n + (pv) ny + (p ) n~\

y + v + n + n + nz C + v

= P (U + v + ) nt . + V 2 nt
C 2 2 2

2 2S+u 2 + v2 + 2  2
= u 2 + p21 nt.
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But the first term of integrand function is positive, therefore,

the whole integral is positive, S 0, since the element of volume d

is positive. From

E - E + S = 0

it follows that

0 E Eo

In other words, theenergy in region 0. is lower than the energy

in region 0 . Thus, the energy may only issue from the characteristic

cone, but not to flow-in. If it is assumed, that all initial data in

the zone 0 were identically equal to zero, than also E = O, and all

2the functions u, v, w, p, p-clo are equal to zero in zone 0 , and

due to arbitrary - also throughout the cone.

In the case of constant c, i.e., in the case of isothermy, the

c represents maximum propagation velocity of disturbance, i.e.,velocity

of disturbance front motion.

(2) FUNCTION OF KOSHI PROBLEM EFFECT:

We shall now assume c = const, and convert the system in the same

way as in Monin and Obukhov work (1958). With this object we bring in

new unknown quantities pu = fx - 4'y' PY = y + ?Yx' P= X. Then

it is easy to obtain for and equations

at = - p + +,
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If now P,p and V are now excluded, the following system will

be obtained for X and T :

S2 + 1C9 = (x - 1) gX + C2  z + _ ' 2 a2

a 2x = c22aAx 2A ax y 

2x (x - 1) gX + C2 + C2C ( 7 .4)

In the starting unknown quantities at t = 0, for initial system

were 4 o' t o' Po' Xo' po, then for (7.4) the starting data will be

2) l, Po X = X ) ,  D - P,

T= o --- 1 - P = - " o gp . (7.5)

System (7.4) has not the fifth, but the fourth time order. By

solving it we find the remaining unknown quantities by means of one

more time integration. Since the order of the system has decreased,

then it naturally, has less solutions. Namely, if the starting data of

initial system satisfied condition

o 1 - P Xo + gPo 0, (7.6)

then for the new system (7.4) there will be zero starting conditions,

and the solution will be identically equal to zero. However, the

whole solution cannot be zero. It will be stationary, independent of

time, and conditions (7.6) will be implementing identically (this is

the condition of horizontal motion, solenoidality, geostrophicity and

rndition of quasi-statics). Stationary solutions correspond fully in

the model of flat earth to inertia-gyroscopic waves, known to us.

At )~= 0, i.e., in condition of quasistatics, in the left portion

of the second (7.4) equation instead of a
2X/at2 will be found zero.
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The time order of the system will decrease to the second.

Now we exclude from the system the unknown T . We shall get

22 + 1 (C 2 Xzz + xgX Xtt) +A (x - 1) g 2X + X2 = 0o.

(7.7)

In this case the starting conditions will be the following

X = Xo0 Xt f=Xtt = X2, Xttt  X3  t = 0, (7.8)

where

XX = - -o + g p , -X 2 = + C A +

C 2 2)

+ xg-- (x +  X,

After X will be found as a result of solving equation (7.7) with the

starting conditions (7.8), it will be possible to find , by solving

the first of (7.4) equations - Klein-Gordon type of equation. It

should be mentioned, that a case is possible, when X= O, andl , O.
apo

This will take place, if at the starting moment X-O, a + g

-0, i.e., there is no vertical velocity and the fulfilment is of

static equilibrium condition, and the 1 o and lr o - Po are distinct

from zero, but quite definitely depend on height as e- gz/c . Then

also

2 ,
cf(X, Y, Z, t) = e-gz/c c (X, Y, t),

where function 1p satisfies the equation
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+2 - c 2 0

This is a two-dimensional solution, corresponding to Lamb's waves.

Now we shall speak only about the solution of equation (7.7)

for function X. It does not depict anymore either the inertia-gyroscopic

wave, or the Lamb's waves. We carry out the usual substitution of

variables, which destroys the term with the first derivative

xg
z

X = e 2C2

after which the equation will be

I + - -2 2. +
t2  zz 4C2

S (x 1) g2 l + \C2  tt = 0. (7.9)

The marginal conditions are as follows: on the earth's surface,

at z = 0, it is assumed Y\= 0, and at infinity the condition is taken

ofY limiting. The starting conditions at t = 0, are the following:

xg z  xg z

' o e c2  x), xt= ''"i (= e2C2  X1),

2g z

1 tt =  2 = e2C2 ' ttt = 3 e2  )

Now we have a differential equation with constant factors and

the starting conditions. The problem could be solved by means of

Furier's conversion from variables x, y and Laplace's conversion by t,

since the solution is being sought for on the semiaxis t > 0 at

starting conditions. First we shall carry out Furier's conversion of

the sought for function and of the starting conditions:
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(CxI , y , Zt) = ei (klx + k2 y) (k1, I 2, x, t) dk1 dk2,

(x, y, z, t)= -2 ei (k1x + k2 y) k1 , k2 x t) dk1dk2.

The equation will become

a 2 2 2

- I2  (x -1) 2  + = 0. (7.10)

After this we shall carry out Laplace's conversion by t. For

this both the portions of equation (7.10) we multiply by e- p t and

integrate by t from 0 to , denoting,

I(kl, k., z, p) = e Pt (k1, k2, z, t) dt.

0

Then we shall get

(12 p2) z - 2 - - x g2  =

(7.11)

where the right portion r emerges with integration by parts from

initial conditions

4c C
r = (l zz + o ()zz - g  + k 2  - (l ++ Pyo

2 3-- - (-Y3 + P12 + P 1 + P -qo).
C

Marginal conditions at z = 0 and z = remain the same as for

By resolving linear differential equation with invariable factors and

estimate of marginal condition at lower boundary we will have
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z sh R (k) ( - 7) r sh R (k)
S= P 2 dz + A (p) R (k)

R (k) (p2 + 12 ) P
o p

where x 2- 2 2 + k2 (x -2)

R (k) 
2 2

(12 + p )

The constant A(p) is determined from condition of limiting. It

is not difficult in this case to obtain the following. If function r

is projected oddly on the negative semiaxis, i.e., to determine r for

negative z as

r (kl, k2 , -z, p) = - r (kl, k2 , z, p),

function 9 will be

-R z - z
= - d z. (7.12)

(p2 + 12) R
"co P

It remains now to revert to the Furier's and Laplace's conversions

and to return to the previous function . First we reverse Furier's

conversion. We donote

* (X, Y, z, p) = e p t  (X, Y, z, t) dt.

0

We multiply both the portions of (7.12) by 12 i (k

1 24
and integrate by k and k2 from -oo to oo . From the theorem of

convolution (Furier's conversion of the broduct of two functions is the

convolution of the Furier's conversions of these functions) it is

possible to write
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S* = - G (x - 1z) r ( 1  p)X

X dx1 dy1 dzl,

where

r* (x, y, z, p) = ( l)zz + p (o)zz -

S x2 2 + k Y 2 3 o
4c C C

and
c

G* (x, y, z, p) = k 2 e (k2x + k 2 ) e Rp zdkdk
Ot 22 + 12) 1 2

- co p

The last function could be calculated using formula
o

a (k + k2 ) b2
e (kx + k2y) 1 2 dkdk =

-Oc ad+ (k +k2) b 2
1 2

a 2 2 2
e - yb + (x + y2)

=2 b

b b2 + (x2 + y2)

Then we shall have

exp -c 2

G* (- (x - i) g-2 + p2

where

S= z2 + (12 2) (x2 2

(x - 1) g2C2 + 2

Now we have to invert Laplace's conversion. Assuming G (x, y, z,

t) prototype of G* (x, y, z, p), i.e.,



1+i o o exp 4C 2  p S

G (x, y, z, t) = - ept c 2  dp+

(7.13)
where > O. In other words, the integration is carried out along a

vertical straight in the right-hand semiplane of composite variable p.

We denote also by G the integral operator with core G(x - 1, y - Y1'

z - Z1, t), i.e.,

Gu = G (x - 1 , y - yl, -zl, t) u (xl, Y1, Zl) dx1 dyldzl

Then the resolution is given by the formula

3 G4xC 2 1 h--G - c -D3- a

a 2 a3 " 2
C2  G +  G + G +

C 2 3 Z t -2 t2 1-q a *1

(7.14)

Here, all functions 11 x are taken as extended by z unevenly on

negative semiaxis.

In a particular case, when the starting conditions are preset so

that only " 3 is distinct from zero, formula (7.14) is quite simple:

= C- 2 G 3 . Hence, it is clear that G (x, y, z, t) is the resolution

of equation withC 6 -like starting condition, i.e., function of initial

data effect.
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(3) ACOUSTICAL AND GRAVITATIONAL PARTS OF RESOLUTIONS:

We have to investigate the effect function (7.13). We shall

write it in a more convenient form

G (x, y, z, t) =

ioo exp - X + y2 + kZ2 U
= - 1 ept L 22 + P 2 dp;

87 i -ico ) T3 p2 )x2+y2 2

(7.15)

where

= xR _/' _x - 1
T2 C'1 2C--l 2 C '

12 (x2 + 2) + ( x - 1) g2 C-2z2

3 x2 + 2 Xs 2

P = + i'1 ,  + iT 2' + i' 3 - branching points of integrand function.

First of all we shall try by deforming the contour of integration to

convert the integral into a real one. With this object we have to

imagine the behavior of integrand function in the complex plane. We

select those branches of radicals in the formula of this function, which

for teal p values are positive. In the vicinity of infinitely removed

point the function is unambiguous and behaves as

p (t - C- 1 / 2  2 + -z2

x + + A z2
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AssumingX = 1. At t x C-  / x + y2 + z 2 the integrand

function dampens, when Re p -- +co, and-at tC- 1  x 2 2 + z2

when Re p-- -oo. In the first case it is possible to shift the contour

into +co , i.e., to drive N to +c o. Since in the right-hand semiplane

there are no special points of integrand function, the integral is

found to be zero. Thus, at x2  y + z > Ct the function of effect

is zero - a fact, that we know even before (para 1).

on)
iT2

-it,

Fig.7.4 - Deformation of integration contour.

At /2 + z2  Ct the integrand function dampens now in the left

semiplane. But the contour cannot already be shifted into - , since,

there are in its way special points of integrand function - the points

of branching. Figure 7.1 shows these branching points on plane p. We

draw the cuts, as shown in figure 7.1 by thick lines. Outside these

cuts all radicals are unambiguous functions. The figure at some points

shows in round brackets two numbers. Those are arguments of two

radicals
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( + p2 - 2 + p2 )
32 2 and
2 2

"t +p

To the integral in (7.15) we add an integral from the same function,

but taken on a straight line in the left semiplane from - + ioto -ioo.

This integral will not change anything, as it is equal to zero - the

integrand function dampens at infinity in the left semiplane. But the

sum of two integrals is an integral on complex contour, shown in the

figure. We break this integral into two parts - integral along the

top loop, passing around the point i'i1 , and also along the conjugated

loop around - itil, and integral along the closed loop around i 2 and

il 3 plus integral along the conjugated loop around -it 2 and -it 3 .

Analysing the signs of radicals at both the ends of sections, it is

possible to obtain the followfng formulas. For the first part, which we

shall name Gak (due to causes which will become clear later), will be

G1
00 ak --

2 2 2 2

sin 2 2 2
.sin ..t dV ,

1 x + y2 + _ 2) T2

(7.16)
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for the second

I
Grpab - 2

S( 2 2 2)
cos C x y+ 2 2

(2
sin Tt i

2 2 + 2 2,2 2 2 2

Now we shall explain the physical meaning of dividing the

function of effect into two parts and the meaning of denoting these

parts. In chapter 4 during the investigation of waves in isothermal

atmosphere we recognized acoustical and gravitational waves from their

ultimate behavior in two extreme cases - with transition to int:

incompressibility, i.e., at).(_o--oo and with transition to indifferent

static balance, i.e., at --*-1. Let us see now, what happens to

functions G and G in these ultimate transitions. We assume X = 1.
ac grav

Let first of all .--4co Then T =xg/4H--~co . Hence, it

already follows, that integral Gac completely disappears. As regards

the second integral Ggrav, it, as can be easily checked, converts into

G 1
rpab 2 ' 2 

1J 2 2 2 2
It cos (2H)-3 x 2 + y + z 2

sin .t 2 dy,

3 x +y + 2 2 _g 3

i.e., undergoes only some not very considerable quantitative changes.

Let X--41, in this case we shall assume 1-->0. Then, contrary-wise,

Gac changes little
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iO[ C x ~ + 2 2+/ 2

Gak 2 2 Sin t%2 + y2 + z2  2 dt

and

t cos [(2H)- 1  . 2+

rpab 2 2 2 2
y x + 2 + s

This function depends on time aperiodically.

These properties of tunction Gac and Ggrtv give grounds to see

in them actually the acoustical and gravitational portions of the

function of effect G, all the more so, as even in the shape the integrals

are written in a way, that Gac represents superposition of harmonics

sin t with frequencies higher than 1 =/V'X(/4H, and Ggrav - with

frequencies lower than 2 = 7F (X)- 1)g/. H, as it shoudl be for

acoustical and gravitational wave. Thus G in the form of superposition

of acoustical and G - of gravitational wave.
gray

Finally we shall use parameter X and see into what our functions

of effect get converted in quasistatic approximation. At X--> out of

three special points two (ic 1 and iZ 2 ) withdraw into infinity; Ggrav

disappears in the same way as at --- oo, which quite corresponds to

the known fact, that acoustical wave are absent in the approximation of

quasistatics. Formula (7.15) becomes

r+io> -1 1 / 2+ +P 2

G = 8  1 IPt dp.
8 2 -ic -r V2 2 2 2

2 X + 3
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The prototype of Laplace's conversions we find in the tables of

Laplace's conversions. It is equal to

1 xH 2
G 43 2 2(x - 1) g (x + y )

t 2  1 Ix (x
2 + 2 ;2)

o 3 4 (x- 1) g H 2(x - 1) g

_/ 2

0 ,42 (x -1) gH.

The vertical propagation velocity of disturbances has become

infinite, and the horizontal is equal to

2 9T (x 1) gH 2 x - 1
xC

x

which constitutes 2j/7 - 1/)-O.9 of the previous velocity. Hence the

X= 1 will be assumed universally.

(4) ASYMPTOTIC BEHAVIOR OF EFFECT FUNCTION AT HIGH t VALUES:

The propagation nature of acoustical and gravitational waves is

quite different as we know. Becuase of this it may be expected that

the behavior also of both portions of the function of effect G andac

Ggrav will be radically different. A considerably higher damping

should be expected of the acoustical portion in time and considerably

less diffusivity of the wave front. Moreover, gravitational portion

should display greater anisotropy - non-equality of horizontal and

vertical directions should be shown more clearly.
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iTr

Fig.7.2 - Integration contour for asymptotic
evaluation of Gac

Direct investigation of the integral concepts for Gac and

G is made difficult by the analytical complexity of these formulas.
grav

It is possible, however, to deduce asymptotically approximate formulas

for these integrals, the accuracy of which unlimitedly rises with t

increase at certain values of dimensional variables. We shall proceed

now to deduction of this asymptote. Naturally, this type of

asymptote will be useful not the vicinity of wave front, but only in

the internal region.

We start with Gac. First of all we convert the integral in the

right portion of (7.15). With this object we change the contour of
we

integration;/shall draw it not as in Fig.7.1, but as in Fig.7.2. This

could be done with the use of integrand function damping in the left

half-plane. The advantages of this type of contour is that function

ept gets exponentially damped in the left half-plane, and if we

discard from the contour rectilinear "tails", leaving only as low as

desired (but fixed) surroundings of special point with radius , there

will be an error exponentially damping with t increase, i.e., unreal

in the main term asymptotes.
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Let us deal first with the integral along the top loop. From

what has been stated it follows that it is possible to expand the

integrand function into series according to orders p - i- 1 and to take

the least number of these series terms for obtaining the chief term of

asymptotes. This least number is two with expansion into series of the

exponent, since the first term being one does not have a branching point

and the values of integrals on both the edges of the section will

reciprocally disappear. Simply speaking, all functions not branching

at point p = il'1 could be substituted at this point by their values,

and the exponential curve - by its exponent

1 ept -C- 1  1 1

1 2

The argument of radical ip + g1 should be taken at the top

edge of the cut as 3 t/4, and at the lower edge - - /4; 2- 1  is

assumed to be positive. Now we bring in substitution of variable in the

integral

p = i 1 - x.

Then the sum of integrals on both the edges of the cut will be

e ir2t - t -"2 - e -i/4 d
8 2i c (I 2 -

o 1 2

The integral is taken here on a minor surrounding of zero (0, ), in

which case there will be an error, exponentially low with t increase,

if the integral is spread from 0 toGo . Then the integral is easily

calculated and found to be equal to
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1 ei (T 1t+3X/4) 7v 2T, 1_
47.2i C (2 y 2

1 2

or

213/2 gC 2)2 2t-3/2 exp i t +

The integral on lower loop is, apparently, complexly congugated

with this one. Therefore,

G = 1 Kr22 cos (-2 t,+ (7.18)
(ak (gt) 3/2  (x - 2)2

The main part of the integral is found. It dampens as t- 3/ 2 . The

next terms dampen even quicker. Primarily the attention is drawn to

the fact, that the main part is independent of any dimensional

coordinate. Thus, after some time from the acoustical part of the

resolution remains some quickly damping background, varying cophasaly

and with similar amplitude in big volume. In fact, the damping is even

quicker, if we take into account the wave reflected from the earth's

surfacl, i.e., the uneven continuation of the starting conditions. The

effect of operator G on odd function could also be written as:

Gu (X, yZ ) = (x- X 1 9 Y - y1, a - zl' t) -

o -

- G (x - x1 , y - y1' + Z1 , t ) dxldyldzl

Since the main asymptotic term Gac does not depend on z, then in

this formula the incident and reflected waves are reciprocally

destroyed. Thus, we can only say, that starting from the moment, when

both for incident and reflected waves it is possible to apply asymptotes,
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the acoustical part of the solution dampens quicker than t-
3 / 2  We

did not investigate the next terms of asymptotes.

irs

iT3

-iT3

- it 2

Fig.7.3 - Integration contour for asymptotic
evaluation of Ggrav*

Passing to investigation of Ggrav * Here we shall carry out the

same contour deformation, as in the preceding case (Figure 7.3).

First we take the integral on the loop, by-passing point iq- (and the

complex conjugate, on the loop by-passing point -i 3). The reasoning

will be the same as in the preceding case. Here it will be even simpler:

in the expansion of exponent it is possible to take the first term -

one, as the branching remains in denominator. The integrand function

becomes:

- ePt
8XT i 24 a 2 -x2 2 2

2 3 + y + z 23 3

The argument of radicalJ ip + is equal to - X /4 at the lower

edge of section and 37C/4 - on the upper edge. We bring-in the same

substitution of variables, as before

p = i - x.

Then the integral becomes
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1 2 ei -3 t e- Ot t  X/4 -e- /4
8 J i 2 2 2. 2 2

o 2 2) (x + + z2) 2

Calculating this integral and adding it up with the complexly

conjugated, we get

G1) 1 Cos (t +t +
rpab 3 1 _2

S(80yt) / 2 x2  2  2 - 12) 3

(7.19)

Now let us change-over to the second part of Ggrav, to the integral

on loop around the point -2 .  For asymptotic calculation of this

integral the p in integrand function could be substituted by its value

at point of branching i 2 everywhere, except the exponent e t , which

2 2
provides for the damping of integrand function and the binomial p + 2*

The latter, by the way, could be simplified, by assuming (IC2 + ip)

(T 2 - ip)' 2T12 (2 + ip). As a result the integral becomes

(r2 2 2

S t exp _ c1 Vx2 + y< + 2 (ip +( 2)

1 ept 2 ip + 2dp,
-%i 2 2T2 +2 2 p

2 il 2-2 (ip + 2) (+2 -V 3 +x2  +

or, if we introduce a new variable of integration p = i (r2 +a),

eiV 2a
e et e dc (7.20)

T

where,
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-1 /2 2 2 22
a = C x + y + 2 2..

b = 87 2 V22 2 3 +z (7.21)

The integration contour on plane oC is shown in Figure 7.4.

For the correct selection of branches it is necessary to assumelfr-

as positive for positive oc .

The integral obtained unfortunately, cannot be evaluated by such

simple means as before, i.e., expansion of integrand function into

series in surroundings of the special point, due to the fact, that now

connected with the branching point is a real feature. It will be

necessary to use the method of crossing. Having written the integrand

Fig.7.4 - Part of contour, shown in Figure 7.3,
on plane

finction as

H(a 1eH , ) (t , c) = ixt - an x,

It will be necessary to draw the contour of integration through the

cross-over point, i.e., through a point, at which the real part of

exponent would be greater than throughout the rest of the contour, and

in such a direction, that the imaginary part of the exponential curve

on this contour in surroundings of the crossover point would have been
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constant. We shall investigate first the real part of the exponent.

Assuming oC = re , argument may vary in accordance with the section

drawn in plane 0o from -3 /2 to 7C/2. Then

R ---- a-o- -

R e H (t, o) = - rt sin 4' - co - =
.Y 2

= - cos-- 2rt sin - +
2 2 ' -i

(The logarithmic term need not be taken in the estimate, as it is

asymptotically negligible in comparison with preceding term at low oc )

This formula is equal to zero, if cos - = O, i.e., on the negative

semiaxis, 4f = -2 , and on the curve 2rt sin -- + = 0. These two
2 -

curves are shown in figure 7.5. They break up thd plane into two zones:

in one the real part of exponent is positive, in the other - negative.

The first zone on the sketch is hatchured. Intersection of the two

curves occurs at point

al = k(a -2/3

We draw the contour of integration as shown in the figure.

Throughout the contour Re H<0, and at point oc 1 Re H = 0, i.e., at

this point the Re H is highest. We shall show that it is possible to

Fig.7.5 - Contour deformation for the application
of crossover method.



- 261 -

draw the contour in such a direction that ImH in surroundings of c1

will be constant, i.e., that this point is the sought for crossover

point. In surroundings of point o0 1 we expand H(t,oC) into series

according to orders of C - i; H(t, Oc1 ) = 3i ( a2t/)1/3 -l2-i(a/2t)1/3j.

The next term of the first order relatively to (oC- CK1 ) converts into
(o - c) 2

zero, since aH(t, c 1)/aC0= 0. The square term is equal to 2

4d 1/2 The second term in brackets could be

1 1

asymptotically disregarded. Now we take the direction of contour in

such a way, that the square terms along the contour will be real. For

this there should be

2 5/2
2 L - 1 a 1

(aC - 1) = 5/2

or ~- 0C1  + "~ 1/e /4 .e., contour shown in figure 7.5

should intersect the real axis at point OS1 at an angle -/4.

Let us return to integral (7.20). For asymptotic evaluation of

its behavior the significance is only of the surroundings of the

cross-over point oj1, since the remaining portion exponentially decreases.

Whereas in the surrounding of this point it is possible to write, that

the integral is asymptotically equal to

e-3i (a2t/4)1/3 + i/4 2ta -1/3 e- (3a/8) (a/2t)- 5 / 3 2 d

Here we have taken as a varibalI integration 6=k - d 1 ) ei
7 / 4A .

The limits of integration without any adverse effect could be taken -mo

and 00 , changing integral to exponentially decreasing summand. The

integral obtained is easily calculated; it is equal to
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3t

It only remains to remember the multiplier, which 
was in front

of the integral in formula (7.20) and to add to the 
obtained term the

complex adjoint (integral on symmetrical loop around -iV 2 ). We have,

finally

(2) = ---- -co at / (7.22)
rpab 3t b C 2os t - 3 +

Thus, the asymptotes of the gravitational part in the 
function of

effect is shown by the formula

G = G() G(2) (7.23)
rpab rpab rpab

The gravitational part of the effective function dampens as t
- ,

i.e., is considerably slower, than the acoustical. It is considerably

non-uniform in coordinates and is ani'sotropic. This asymptote decays

in the approach to vertical direction, where it absolutely loses any

meaning.

2 2
But what is the behavior of G vertically, at x + y = 0?

grav

It is easy to see, that in these conditions t2 = T3 and the calculatior

of G is confined to integration along the contour, passing 
around

gray

the pole, i.e., to calculation of srbatraction at point p = it 2 = iT3

exp C z + P
G aePt dp+complex conjugated
rpab -  2 (2 + p2) z

term.

This produces



- 263 -

1 -- 1 xH x - 2 sin (x - 1)g t
rpab 4= (x - 1) g x2xH xH

(7.24)

This is not asymptote, but exact solution. We can see, that on

1
vertical line there is always undamped standing wave .

(5) NUMERICAL ESTIMATE RESULTS OF THE WEIGHTING FUNCTION:

Asymptotes, obtained in the preceding paragraph, were useful with

high t values, i.e., considerable time after passage through a viven

space point of the wave front. It is of interest to estimate the

weighting function throughout the whole zone, specially in the vicinity

of the front. This will make it possible, besides everything else, to

evaluate the zone, where the asymptoes give satisfactory results. We

give the results of such estimates.

Figure 7.6 - 7.13 show contour lines of acoustical and gravitational

parts of average function for different moments of time. The initial

disturbance was taken at 30 km height, and the following functions were

plotted.

G (x - x1 , y - Yl' z - z1 , t) -G (x - X1 y - Y1,' + Z, t)

for G and Gg . Fig. 7.6 shows contour lines of Gac at t = 1 min,
ac gray ac

Fig.7.$ - these of Ggra*. The disturbance is propagating at velocity

c = 18 km/min., therefore, during 1 min it did not have time to reach

the earth's surface. The contour lines are similar to concentric

1. In Ross' article (1961) a similar problem is being resolved, but
for alayer of compressible fluid with open surface. The equations
there are somewhat simpler of second time order. Asymptotic
investigation leads to similar results: immediately behind the
wave front the main significance is of elasticity, whereas in the
rear the oscillations are similar to those, which would have been
in incompressible fluid.
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surroundings. However, even with low t value the difference is clear

in the behavior of acoustical and gravitational parts. While the Gac

contour lines concentrate at the periphery and the field in 
the internal

part varies continuously, the gravitational part of 
the mean function

G behaves in an entirely different way. The zone of sharp
gray

variations remains near the point of initial disturbance, and farther

on the function gradually drops. This difference is specially clearly

defined in vertical sections (shown on the right), drawn at a distance

of 2 km from the point of initial disturbance.
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Fig. 7.6 - Gac contour lines at Fig.7.7 - G rav contour lines at

t = imin. r = x 2 + y t = 1 min.

The next four figures pertain to the time t = 5 min. Fig. 7.8

pertains to acoustical part. The sphericity of level surface is

disturbed by the reflection of the earth's surface, but non-the-less,

remains noticeable. Figure 7.9 shows vertical section of this mean

function, drawn through the point of initial disturbance, and the

reflection was not estimated here. It is possible to see the internal
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zone of Gac invariability and quick drop toward the edge. Figure 7.10

shows gravitational part. This function in no way resembles the

acoustical. The change of phase is specially typical, Figure 7.11

shows for comparison' weighting function, claculated from asymptotic

formulas, obtained in the preceding paragraph. The qualitative

convergence could be taken as successful.

Figure 7.12 pertains to the gravitational part of the mean

function G at t = 15 min, and figure 7.13 - corresponding asymptotes.
gray

With the passage of time the number of nodal surfaces increases and the

pattern becomes multipetal. Both the figures coincide satisfactorily.

The number of lobes is the same. Moreover,the coincidence takes place

not only in the center, but for on the periphery. All this goes to

show, that the asymptotic formulas could be used for mean function in

a wide range of conditions.
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Fig.7.8 - Gac contour lines at Fig.7.9 - Vertical G section;

t = 5 min. r = 0.
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Fig.7.10 - Ggrav contour lines Fig.7.11. Contour lines of Ggrav,

at t = 5 min. calculated from asymptotic formula
at t = 5 min.

Z HM
z nM / 300

240 0, 240

180 180 023

120 - 120

60

. 0
60 120 180 240 r KM 60 120 180 2 40 rKM

Fig.7.12 - G contour lines Fig. 7.13 - Asymptotic expression
grat t = 15 min. for G at T = 15 min.at t =5 gray
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6. FORMULATION OF PROBLEM ON PROPAGATION OF DISTURBANCES
IN THE CASE OF ACTUAL TEMPERATURE PROFILE AND
SPHERICAL EARTH:

The problem, about which we shall speak in this paragraph,

is practically the most important out of all the applications of

developing theorem. There is a good amount available of the

literature, which throws some light or touches upon this question.

Until recently the only manifestations of the global disturbance

propagation from a concentrated source, fixed by observers and to

a certain extent ihvestigated qualitatively, were the two magnificient

natural explosions - the explosion of Krakatoa volcano in 1883 and

the explosion of the huge Tunguss meteorite in 1908. Pressure

surges were marked by barographs throughout the terrestrial globe,

and the waves passed around the earth several times. It was possible

to measure the propagation velocity of the wave front. It was found

to be about 317 m/sec, which corresponds to h = 10 km, obtained from

formula v = gh.

Later on these data served as empirical basis for working

out theoretical models of atmosphere. (We have seen, that this h

value conforms very well also with our model, based on standard CIRA

atmosphere 1961). At that stage the more well known theoretical work,

which threw some light on the mechanism of disturbance propagation

from the point source, was of Peckeris (1939, 1948), and also of

Scorer (1950) and of Jacchia and Kopal (1952). These models are

still very sketchy.
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During the subsequent period as a result of hydrogen bomb explo-

sions the accumulation, unfortunately, was of too vast observation

material. The interest for investigating this material empirically

and theoretically was shown primarily by Japanese investigators (see

for instance Obs.division, 1955), specially Yamamoto (1957). A

note should be taken also of Wexler and Hass article (1962) with multiple,

very graphic figures of wave front, propagating from the point of

hydrogen bomb explosion, and the recently published work of

Wickersham (1966).

Many theoretical works have appeared. In majority of

them the atmosphere is presented as composed of a high number

(upto 20-40) isothermal layers. Here a note should be made regarding

the work of Hunt, Palmer and Penney (1960), where the number of

layers is still not high, and the subsequent work of Press 
and

Harkrider (1962) and Pfeffer and Zarichny (1963), also the works of

Pierse (1963, 1965) and van Hulsteyn (1965) From our point of view,

the most mathematically accurate formulation of the problem is of

Weston (1961, 1962), although in other works also the physical results

obtained are highly interesting. These results have been partially

mentioned in preceding chapters.

We shall construct now our own version of the theory of

disturbance propagation from the instanteneous point source, based

on our previous analyses. We shall only write the formulas.

Calculations from them were not carried out.

We shall take as basis formulas of preceding chapter.

At the starting moment, as has been stated, starting moment, as
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has been stated, function y = X P:/Pc ) should be preset

and its three derivatives with respect to t i.e., conditions (6-4).
(k)

In this case the functions y are not at all arbitrary. The

arbitrary are the starting fields u, v, w, p, .* They express

the divergence X quite obviously, Xt from formula (6-2) and the

two next derivatives from the general formula (6-3). This formula

combines the two. One of them is obtained by substituting instead

' (c) (c) (c)of f , f2, CT functions X, Xtt C , which we denote by f1  1

The second formula is obtained by substituting fl = Xt' f2 = Xttt' =
1 (d) r-(d) 4 (d)
_ (PZ + gp ). These values we denote by f , 2

Since y is distinct from X by normalizing multiplier - Po , the

starting values will be:

(0) f(C) (1) (d) (2) (c) y(3) = f(d)
1 2 2

where

1,2 1,2 (7-25)

The starting values are expanded into spherical functions,

after which, as we know, for each component (n, s) it is necessaryt

find expansion by natural oscillations:

(0)Y (o) C .Y .(X)
n,s n,s,3 n,j

Y(2) ( 2 c M)
ns n,j)n,s,j n,j

and

y(1) =_ d (X),n,s n,s,j n,j

(3) 2 )d (X)
n,s n, n,s,j nj
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Finally the resolution will be

y= eis fn (COS n,(X) (a nje n,j t + bn je

n,s,j .... (7.25)

whore

+ ns, 1 - s,

n,=,js,j nn bnzsj ( n,s,j 0n,an s(Cnss

Formulas for factors c, d were given in chapter 6. If

we substitute there the term f c, d) we shall have after some

1
conversions

cj, a. = xP -P

o

+ H (c,d) f(c,d)

+; - Yg H Y. "

x - h H ( (c,d) (ctd dz (-6

Sf (7-26)

1 The conversions mean, that into formulas (6-50) i stead of f d(cd)it

is necessary to substitute theit terms (6-3) by f c,d) and Cd.

After this integration is done by parts so that under the sign of

integral there will not be derivative functions fl and , but only

these functions. In integration by parts appear marginal terms and it

is not obvious at once that they are zero. In fact, they are zero,

because the starting data at z = O, should meet the following condi-

tions: there should be conversion into zero of w and also of w time

derivatives, which could be expressed by means of a system of 1

equations by the starting fields u,v,w,p, . Thus, wl = - -(pz+gP)
and wtt = -/(X- 1)gX - c2X z + gwz)/ should convert into zero. This

is what assures disappearance of marginal terms in formula (7-26).
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Incidentally it is precisely this conversion we had in view at

the end of preceding chapter, when speaking about factors c, d

converting into zeros for Peckeris solutions. It becomes immediately

clear from formula (7.26).

Letus now take a particular case of setting starting conditions,

(c)when only density disturbances are distinct from zero. Then f 1(c2 0

(d) (d) fd)
and therefore, all the factors cj = 0; g (d) = -gp/; , (d)

Substituting these values in (7.26) and integrating by parts, so that

this formula does not contain derivatives c(d), but only c (d), we will
z

have

xo -- y - )y d] +

+ xgo -2 ( - YJ() (0)
d = (7.27)

Hence, we shall assume that the close to surface disturbance values,

i.e., (0) are zero, Now we make one more simplifying assumption,

that the starting conditions are of the type 6 = function:

= KS (z - Z*) n ( -n Pn (cos 9). (7.28)

n=o

then,

x fyo + -y( 7n + -K
d. =

(7.29)



- 272 -

The asterisk signifies, that the corresponding values is taken

at the height of explosion z,.

In principle, the solution has been obtained. But physically the

interest is not of function y, which is not directly evident, but

pressure. Using the y and pressure relation (see beginning of chapter 5),

it is easy to obtain,

p = x2 -oK (. n + Pn (cos 9) Cosa t
n,j 2

yn, +- -t +f Ynj njYnj +

n( hn j  2H n, jn,

S- n(7.30)
C 2 (2 g 2
n,j nj n,

This resolution includes constant K, which has to be selected from some

normalizing conditions. One of the possible methods most frequently

applied (for instance, by Weston), is to preset amplitude of disturbance

at some single point, for instance, directly above the point of explosion.

These data could be taken from observations. The amplitude here is

taken somewhat conventionally, since the resolution is not sinusoidal.

Immediately after the passing of front through the observation point the

pressure reaches maximup then follow several gradually damping waves.

In formulas (7.30) and (7.31) the summation is double. The following

order of summation is the most conveninent. First the summation is done

by n, along one mode of vertical equation, and then by all (or

practically, several) moede, analysing series (7.30) and (7.34), it can
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be seen, that the inclusion of very low and very high wave numbers n

is negligible, so that it is possible to leave only certain range of

mean n values.

If the low n numbers are discarded, the Legendre polynomials in

formula (7.30) could be substituted by their asymptotic values at high

numbers

P(cos -)
-2 xn sin@

(7.31)

This presentation will be disturbed only in the direct vicinity

of poles, mole exactly, it holds true at Z/n -Q ( - E./n, where is

random fixed constant. The lower we take this constant, the rougher

will be the residual term. The sum (7.30) we shall write as

p= cos + - tnjt f (n) +

+ cos n + +f (n).

(7.32)

Under the sign of the sum here is the product of fast oscillating

function cos n + - - at or cos n + - - +

by function, changing very gradUally. Since we are not taking the

lowest n values, the spectrum of Laplace's equation will be very dense,

almost continuous, between the two subsequent eigen values n the function

changes very little.

Let us now take the sum along some characteristic curve. For any

t moment and point Q the main significance in the sum is of several
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summands corresponding to wave packet with group velocity aeit, i.e.,

passing the given point at a given moment, and also to wave 
packets

passing through given point not directly from the source, but after

passing around the earth several times. This could be proved by the

method of stationary phase, applied, for instance, by Weston (1961).

The principle of stationary phase was invented by Kelvin specially for

similar situations, he also has introduced the concept of group velocity

by means of this principle. In contrast to the usual application, we

apply now the principle of stationary phase to the sum, without

substituting it previously by integral, which would have been baseless

due to the presence of fast-oscillating function, the period of which

is quite commensurable with the spacing of summation.

Let us take the first of the summands in (7.32). Taking any n

value, we assume it is , and analyse several terms of the series with

values n close to . We use expansion in accordance with Taylor's

formula

c n + x- - ',- -Re ei 0 + 1

2

be (n - 2 C rYn
S- e 2 2

(7.33)

Since the f(n) varies very gradually, we substitute the f(n) values

by f(N ). The values is stationary, if

exp i n -c = 1, TC.

- t = 27d ,ol = 0, 1, ...
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In this case the formula for wave packet, i.e., for the sum in n

values, similar to , could be converted as follows:

cos n + 2 - -T- . jt] f (n) c=

i[, Re +i +jj j - - - t] e i (n )2 O.Yj2 d

Re ee24 -77 ti

i (n - )2 n

x e 2 2 'j Yf (,) =

Sos + - t +

+ ---- sgnr" o f ('). (7.34)

For the second summand in (7.33) the stationary points are those, where

+ taa& /an = 2 tcKd, oC = 0, 1, 2, ... and the corresponding wave

packets contribute

2 cos + + t + gn f
-- t -t j4nj

(7.35)

Considering, that number n is bound with wave number k by relation

k n/a, we may finally formulate the obtained result in the following

way. At present e and t at each mode of vertical equation we have to
find points, where group velocity is

u-- = a + 2% ,OC = 0, 1 is (7.36)ak t
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or

-- = -- + 2C o , o( = , 1, ... (7.37)a k t

amd each of these points contributes into formula for pressure (7.34)

or (7.35), where

2-
f( = xpo

y + 1 2 +)l- g .~ + g  -

2 h 2 2 ,

(7.38)

The physical meaning of (7.36), (7.37) is quite clear - group

velocity is such, that the corresponding wave packet during time t

reaches point 9, directly from the shot point, or having passed around

the earth once or several times. The formulas obtained should be

summed up on all the modes, where there are points with this group

velocity. As- the formulas show, the essential point here is, that LT"

0, i.e., the variability of group velocity or dispersion. Hence it is

at once clear, that the reasons given are suitable only for those 9, t,

for which a 9/t is lower than the maximum group velocity 315-317 m/sec.

But if the investigation has to be of the head of the wave, i.e.,

the surroundings of its propagation front, the stationary phase method

is not applicable any more. Here we have to calculate the sum total

throughout the main non-dispersing complex mode h"d10 km. It shoudl be

mentioned, that this sum could be of significance also for the area
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located quite far in the rear of the front. This will happen, if the

source, i.e., the shot is not high above the earth's surface. This is

indicated by the multiplier y + - -- ) y/. As we know, the

basic mode h = 10 km very quickly dampens with height for low frequencies

(periods over 10 min), and for high frequencies concentrates at height

17 km and just as quickly dampens at high altitudes. With high altitude

explosions the basic mode cannot be excited at high rate. On the

contrary, in this case there is excitation of higher modes, both acoustical

and gravitational.

We have given formulas of solution with one version of preseting

the starting conditions - when the starting density is preset in the

form of - function, and the remaining quantities at the starting moment

are equal to zero. Of course, the general formulas, given earlier, make

it possible to resolve any starting problem. Now just a few words in

defence of the selected starting conditions. At the instant of thd shot

the temperature in the source instantly rises. The density with this

varies insignificantly, therefore, in proportion to temperature the

pressure rises also. The shock wave withdraws from the shot point and

beyond it the pressure levels out. The temperature remains high at low

pressure, i.e., the density drops at high rate. This is the moment,

that we are taking as starting point for the solution of our problem,

since the shock wave is not included in our analysis, being an essentially

non-linear and small scale event. As the starting condition it is also

possible to take, as it is done frequently, the presetting of velocity

divergence as a -function. Generally, the selection of correct

starting conditions is a matter of explosion physics, the same as

determination of the share of the explosion energy, which goes on
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formation of our large-scale waves, and not converting, for instance,

into energy of shock wave, dispersing in the vicinity of the source.

* S S • @ @-

' S S S
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CHAPTER - 8

ACCOUNTING FOR THE MEDIUM WIND IN THE PROBLEM OF
FREQUENCIES ON THE ATMOSPHERE'S FREE OSCILLATIONS.

Throughout the theory, developed in preceding chapters,

equations of dynamics were linearised in relation to a certain

medium state, which was that of calm, i.e., there was no presence

of medium wind.. At the same time it is known, that the wind affects

the propagation of waves in the atmosphere. The second important

sphere of events, where the effect of medium wind could have been

felt, is the theory of tides in the atmosphere. We have mentioned,

that one of the possibilities to explain in which way the solar tides

in the atmosphere happen to be of higher intensity than the lunar,

whereas the tide-forming power of the sun is weaker than that of the

moon, is the theory of resonance.

Since the difference between the frequencies of solar and

lunar tides is very negligible, about 3%, this theory requires very

precise "tuning" of natural frequency to frequency of solar tides,

considerably more precise than these 3%. We know, that with our

model of temperature stratification, namely, for the standard CIRA

atmosphere 1961, the nearest eigen value is much too far from the one

required by the resonance theory. The dimensionless frequency

f = 0 /2 is equal not to one (period of oscillations - semidiurnal),

but to 0.96, i.e. 4% less. (If we compare not frequencies, but the

values of equivalent dynamic depth h, then instead of the 7.9 km

required by the theory we get 6.8 km). The question arises, whether

the position is saved by the estimate of medium wind.
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Generally speaking, the problems in which it is required 
to

find the spectrum of the atmosphere's oscillations in the 
presence

of certain medium, usually zonal wind, are very difficult and hardly

touched upon problems, studied by the theory of dynamic stability.

But in the theory of tides, as in some other important questions,

for instance, in the theory of propagation of acoustico gravitational

waves from the point source, it is possible, as we will see, to

manage with considerably more modest means.

Assuming that an introduction is made into equation of a very

low velocity of medium wind, each point of the spectrum experiences

a small disturbance. The order of this disturbance will be such that

the phase velocity of oscillation would have to change by a value,

commensurable with the brought in wind velocity. With the increasing

wind velocity the disturbances become more considerable and it may

happen, that two eigen values will merge. With further increase of

velocity they will separate in complex plane, i.e., the frequencies

will become complex, There will be an appearance of instability, No

matter how low the wind velocity is, there will be a zone in the

spectrum, where the brought in disturbance will be sufficient for the

merger of eigen value. This will occur in densification zone of the

spectrum, for short gravitational waves. Here, as we know, phase

velocities of characteristic solutions tend to zero.

The second zone, where the instability may appear immediately,

is the zone of long and slow gravitational gyroscopic waves (internal

Rossibi waves). As regards those zones of the spectrum, about which

we were just speaking, primarily zones of semi-diurnal tides, here
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the spectrum points are sufficiently removed from each other. To

estimate the wind effect here it is possible to use the perturbation

theory.

We can mention several works, in which the perturbation theory

is used with this object. Those are the works of Weston and van

Hulsteyn (1962), and of Pierce (1965), who speak of quick waves, and

Sawada (1966) in whose work these methods are applied in the theory

of tides. However, in all these works the wind model is of the type,

which does not prevent division of variables in equation. The aim

of the present chapter is to show, in what way the perturbation

theory may serve in the estimation of wind of any profile.

For the sake of simplicity we begin with the case of flat non-

rotary earth. In the absence of moderate wind the naturaloscillations

satisfy the system of equations known to us (where zero index at the

bottom means, that we are speaking of solution undisturbed by wind):

i JTou0 = - iOLPo, igPo - g O OC 0 + P%0 = 0,

i 0 = - iPo 0 '+ o 0 = 0. (8.1)

i"o o = - 3z -p o'

Here 9 = P - C2P - entropy. In this equation uO, VO, PO'

could be taken as real, w0 - purely imaginary, assuming now there is

some field of moderate wind. For the sake of simplifying formula

writing we assume (but this, generally speaking, is not essential),

that the velocity vector is every where parallel to axis x, i.e.,

there is one component U, dependent on transversal coordinates y, z.
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Let U = 0 at yl >Y, i.e., the analysis is of stream. It may be

assumed, that at U there is a certain minor parameter, by orders of

which it is possible to expand the solutions. Then for the terms of

the first order relatively to this parameter marked by index 1, we

shall have a systems

i BO Pul + i 1, ~ u = iOP1 - i ocpu u O - oU'yVO Y pUZO',

i'o V1 + io O y ai i O vo ,

SO- i 0 g g1 - ip UWo
i Pco 1 i O a

i P 1 i 1P w0 - go + P1 ioCU PO'

i011 + i01,0 + Pc 1 = - iU O 0. (8.2)

We multiply each equation of system (8.1) respectively by u*, v;,

w*, P/ %, g 1/xjp (where the asterisk means complex conjugation)

and add up the obtained equations. We also multiply equations of

system (8.2) by the same values and add up. We substitute the last sum

by complexly conjugated and add the first sum. We integrate the

obtained equation by z from 0 to co and by y from -Y to Y, i.e.,

throughout the whole section of the stream. It is easy to check, that

we will get

y o Y o

Q1E = - U e dz dy - 2 W Uo gud dy,

-Y O -Y 0

where e - density of energy, bound up with undisturbed solution
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e + VX (lW2+ +1v- + 91 or
4r xp xP

and E - total energy, E = 2Y edz. In relation (8.3) only one
O

quantity is marked by index 1, namely 1; the others pertain to

undisturbed motion and are taken as known. From this formula we find

disturbance of frequency 1. It is found to be real, as it should be

within the applicability of the theory of disturbances. The right

portion consists of two terms. The second, Reynolds number, could be

taken as minior in those important cases, when the vertical velocity

of natural oscillation is very low. In this case the formula simply

confirms, that addition of - Gl/i to phase velocity in the direction

of flow is equal to flow velocity, averaged in the section, and the

most interesting is the fact, that the weight in this averaging is the

density of undisturbed oscillation energy.

Assuming also that w = - io, so that all the variables Uo Vo'

wo' po, o could be taken as real. Then the Reynold's number will be

I U' wou oddy.

Exactly the same can be done in the case of the model of spherical

rotatory earth. Assuming u is zonal component of velocity, v -

meridional, 1 = 2 w cos 9 (where 9 is polar angle), relationship

lengitude T exponential, i.e., has the nature of exp (is c ), iv0 =

vo , 0iw = W0, and moreover uo, Vo, wO, Po' O are real. In this case

it should already be taken, that the average p, values also depend

on latitude, since they are bound up with the wind by geostrophical

relations. The condition of statics should also be met. Thus
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- Pla e a

If it is assumed, that at U there is a minor parameter, then the

quantities p and p may be taken as expanded according to orders of this

parameter; 5 = c +  1' = + P1. The terms of zero order depend

only on vertical coordinate z. We identify them with the standard CIRA

atmosphere 1961, which we were using up to now. From the condition

of geostrophicity we determine by integration from 0 value of the 
first

order pl with accuracy up to random function from z

1 2= - 2awo - Udft + f (z), (,t= cos Q).

o 1 - 'j2

To specialize this function we require, additionally, that the

mean value would coincide in latitude with the pressure in standard
1-

atmosphere, i.e. 5 pld/L= 0. Then we get
-1

1 1

p, = a Po I -U 1 J U d

-1

Hence, it is already possible to find pl, using the equation al/

az = gp1 . Thus, the wind, i.e., function U(z, 9), could be set

arbitrarily, whereas the other quantities, characterzing the main flow,

should be determined unambiguously.

If we now use the same procedure of the theory of disturbances,

as in the case of flat earth, we will get the following result:
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1E = - s Ue dz de. +o 1  
2 + ,, +

a _o * 0

:;Ui :z; 4d 1U' U -

+ o +o U' + -- ) Vol + 21UP0 Vo + 21PluoV -

- - O + OXpo 0 )o o o

(P
1

S_ ) opol  sin 9 dz dO. (8.4)

h mM -40
5 0 
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j7emHee nonyuwapue 3.: uMHee nonywuapue

Fig. 8 .1 - Section of the middle zonal flow according to
Murgatroyd (the continuous lines show velocity

isopleths in m/sec., dotted lines - tropopause).

All the quantities here are real. This formula is the most

common.

We have used this result for estimating on computer corrections

for the frequency of natural oscillation, the nearest to semidiurnal,

so as to see whether the estimate of wind would affect the conditions
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of resonance generation of forced and natural oscillations. 
As the

model of wind we took Murgatryd's model (1957), shown in Figure 8.1,

where the isotachs of moderate wind are shown in m/sec. The mean

pressure was determined from the preset wind, as 
described above.

Correction for frequency, obtained from formula (8.4), was found 
to

be extremely negligible. It cannot be of any significance. Anyway,

this correction obviously, depends to a great extent on the choice 
of

the wind model. In any case it is clear, that by means of this

correction it is impossible to explain the stable resonance of 
solar

ties.

-- .r~ -

*---~
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SUMMAR Y

The book deals with a study of the adiabatic oscillations of

the rotating stratified atmosphere, the temperature of which depends

upon the height, according to the so-called standard atmosphere.

These oscillations can exist due to several different by their nature

and, however, interacting factors - air elasticity connected with its

compressibility, density stratification, and gyro-scopic rigidness due

to rotation. Respectively, for every particular oscillation, i.e., at

a definite value of frequency and wave numbers, as it appears, only one

of these factors plays a determinative role; the rest introduce only

small distortions. It enables to classify the oscillations rather

distinctly, selecting those of acoustic, gravity and intertial-gyroscopic

types.

Much attention has been paid to a study of the energetic structure

of oscillations. Primarily, it appears of interest to find the relation

of energy parts of different types: kinetic, connected with the horizontal

components of velocity, the same with the vertical component, further

elastic, connected with pressure oscillations, and thermobaric - with

entropy oscillations. This energetic structure characterizes the type

of oscillations in the above sense; it determines also the group velocity

of waves.

The paper deals with space distribution of the energy density.

The latter seems to be important in a study of wave quide properties of

the atmosphere as related to short waves, and also in a study of thermal
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barriers preventing the energy escape upward for very long waves.

One manages to study some non-stationary problems of dynamics

of the atmosphere by way of the extension on the wave solutions.

Namely, one treats the wave propagation from the instantaneous point

disturbance like a strong explosion. The solution splits, naturally,

to the acoustic and gravity parts. In accordance with large group

velocities of acoustic waves, the first part of the solution disperses

quickly. The second one disperses much slower, forming the oscillating

"tail" of the wave. The asymptotic formulas for the solutions for

large time have been found and compared with exact computations by an

electronic computer.

One more physical problem treated in the book is a study of

perturbations in some parts of the oscillation spectrum created by the

mean zonal wind.

Very much attention has been paid to the development of the

mathematical apparatus of the theory. Particularly, two chapters of the

book have been devoted to the study of one of the two fundamental

equations of the theory - Laplace tidal equation. The spectrum of the

eigenvalues of this equation has been completely studied. The asymptotics

for the limiting values of the parameters have been found. The

mathematical properties of the second equation of the theory involving

the characteristics of the vertical structure of the oscillations have

been studied. The study of energy turns to be of interest not only for

itself as the most important physical characteristics, but it gives the

mathematical apparatus - the natural metrics for functionally-analytic
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investigation of the equations. In particular, one manages to

clear up the question on completeness of the system of wave solutions

(that is important to establish the possibility to solve the

non-stationary problems by the Fourier method). The same metrics

permits to solve the problem on the perturbations of the spectrum by

the mean zonal wind.
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